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In this paper we consider, for modelling and simulation, a non-isothermal turbulent
flow laden with non-evaporating spherical particles which exchange heat with the
surrounding fluid and do not collide with each other during the course of their
journey under the influence of the stochastic fluid drag force. In the modelling part of
this study, a closed kinetic or probability density function (p.d.f.) equation is derived
which describes the distribution of position x, velocity v, and temperature θ of the
particles in the flow domain at time t. The p.d.f. equation represents the transport of
the ensemble-average (denoted by 〈 〉) phase-space density 〈W (x, v, θ, t)〉. The process
of ensemble averaging generates unknown terms, namely the phase-space diffusion
current j = βv〈u′W 〉 and the phase-space heat current h = βθ〈t′W 〉, which pose
closure problems in the kinetic equation. Here, u′ and t′ are the fluctuating parts of
the velocity and temperature, respectively, of the fluid in the vicinity of the particle,
and βv and βθ are inverse of the time constants for the particle velocity and tempera-
ture, respectively. The closure problems are first solved for the case of homogeneous
turbulence with uniform mean velocity and temperature for the fluid phase by using
Kraichnan’s Lagrangian history direct interaction (LHDI) approximation method and
then the method is generalized to the case of inhomogeneous flows. Another method,
which is due to Van Kampen, is used to solve the closure problems, resulting in a
closed kinetic equation identical to the equation obtained by the LHDI method. Then,
the closed equation is shown to be compatible with the transformation constraint that
is proposed by extending the concept of random Galilean transformation invariance
to non-isothermal flows and is referred to as the ‘extended random Galilean trans-
formation’ (ERGT). The macroscopic equations for the particle phase describing the
time evolution of statistical properties related to particle velocity and temperature are
derived by taking various moments of the closed kinetic equation. These equations are
in the form of transport equations in the Eulerian framework, and are computed for
the case of two-phase homogeneous shear turbulent flows with uniform temperature
gradients. The predictions are compared with the direct numerical simulation (DNS)
data which are generated as another part of this study. The predictions for the particle
phase require statistical properties of the fluid phase which are taken from the DNS
data. In DNS, the continuity, Navier–Stokes, and energy equations are solved for
homogeneous turbulent flows with uniform mean velocity and temperature gradients.
For the mean velocity gradient along the x2- (cross-stream) axis, three different cases
in which the mean temperature gradient is along the x1-, x2-, and x3-axes, respectively,
are simulated. The statistical properties related to the particle phase are obtained by
computing the velocity and temperature of a large number of particles along their
Lagrangian trajectories and then averaging over these trajectories. The comparisons
between the model predictions and DNS results show very encouraging agreement.
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1. Introduction

Particle/droplet-laden turbulent flows have received a great deal of attention from
physicists and engineers owing to their common occurrence in important natural
and technological situations. Various existing analytical methods for the description
of such flows can be broadly classified into two categories, namely, (i) Lagrangian
and (ii) Eulerian descriptions. In both of these descriptions, the fluid (carrier) phase
is described by the continuity, Navier–Stokes, and energy equations, written in the
Eulerian framework. In the Lagrangian description, the particle phase is described
by governing equations written for each particle in a Lagrangian framework. In the
Eulerian description, the particle phase is described by ‘fluid-like’ equations which are
derived, by some kind of averaging, from the Lagrangian equations for the particle.

In this paper, our main concern is the statistical description of the particle phase
in an Eulerian framework. In this framework, the existing statistical modelling of the
particle phase can be viewed as one of the two approaches, namely (i) Reynolds-
averaged Navier–Stokes (RANS) modelling and (ii) kinetic equation or probability
density function (p.d.f.) modelling. These modelling approaches result in continuum
governing equations for the statistical properties of the particle phase.

In the RANS approach, the analysis starts from the Eulerian equations for particle
instantaneous variables associated with the cloud of particles present in a unit volume
for a single realization of the flow (Mashayek & Taulbee 2002a, b). These initial
Eulerian equations are obtained by various methods of averaging (Jackson 1997;
Zhang & Prosperetti 1994). The ensemble average of these equations for turbulent
flows poses closure problems due to the appearance of unknown correlations similar
to the Reynolds stress for fluid turbulence. Utilizing various closure schemes of fluid
turbulence, different models have been proposed to close the unknown terms and
have been recently reviewed by Mashayek & Pandya (2002).

In the kinetic or p.d.f. modelling approach, the analysis starts from the Lagrangian
equations for individual particles and a kinetic equation is obtained which governs the
probability density of particle position, velocity and other variables of interest at time
t. If solved using the Monte Carlo method, this treatment would have characteristics
of the Lagrangian approach. Instead of solving the p.d.f. equation, one can derive
‘macroscopic’ or ‘fluid’ equations for the dispersed phase by taking various moments
of the p.d.f. equation. These equations govern the statistical properties of the particle
phase and are in the Eulerian framework. The kinetic approach is also mathematically
robust for the derivation of boundary conditions for the particle phase (Alipchenkov,
Zaichik & Simonin 2001). Here we discuss the p.d.f. approach under the Eulerian
description due to the framework of the macroscopic equations.

The p.d.f. approach has its base in the study of kinetic theory of gases (Boltzmann
1964; Chapman & Cowling 1970) and Brownian motion (Chandrasekhar 1954; Gar-
diner 1985) and various existing p.d.f. models have been reviewed recently by Minier
& Peirano (2001). These are categorized as one-point and two-point p.d.f. models. In
the one-point p.d.f. models, an equation governing the probability density of variables
of interest of the particle and fluid phase along the particle path is derived. These
variables are known as the ‘state vector’ and various one-point p.d.f. models differ in
the selection of the variables of the state vector.

In the case of isothermal turbulent flow in which the particle moves under the
action of the fluid drag force, the simplest choice for the variables of the state vector
is the particle position and velocity. The derivation of the governing equation for the
probability density function 〈W (x, v, t)〉 of the particle position x and velocity v at time
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t requires the fluid velocity along the particle path, or ‘seen’ by the particle (Pozorski
& Minier 1999), to be a known external variable. Here 〈 〉 represents the ensemble
average andW (x, v, t) is the phase-space density. The equation forW can be written by
using the Liouville theorem in conjunction with the Lagrangian equations governing
the particle position and velocity. The ensemble average of this equation poses a
closure problem due to the appearance of the unknown correlation 〈u′W (x, v, t)〉
where u′ is the fluctuating part of the fluid velocity along the particle path. The closed
expression, after solving the closure problem, for 〈u′W (x, v, t)〉 requires statistical
properties related to the fluid velocity as seen by the particle (Reeks 1991, 1992;
Hyland, McKee & Reeks 1999a; Zaichik 1999; Derevich 2000), whose predictions in
general flows remain a challenge (Minier & Peirano 2001; Minier 1999).

Alternatively, the fluid velocity along the particle path is included in the state
vector (Minier & Peirano 2001; Minier 1999; Pozorski & Minier 1999). In this type
of p.d.f. model, writing an equation for the phase-space density W (x, v, u, t) requires a
Lagrangian equation for the fluid velocity u, i.e. fluid acceleration, along the particle
path. And the major task is to first form this Lagrangian equation and then solve the
closure problem which appears in the form of the unknown correlation 〈a′W (x, v, u, t)〉.
Here a′ is the fluctuating part of the acceleration of fluid along the particle trajectory.
Pozorski & Minier (1999) modelled the fluid velocity along the particle path through
a Langevin equation. This Langevin model equation giving the increment of fluid
velocity along the particle path has the form of a diffusion process with a linear drift
term.

In the two-point p.d.f. models, an equation is sought for the probability density
function 〈W 〉 of the state vector for the particle and the state vector for the fluid
phase. For example, one may consider the two-point p.d.f. 〈W (t; x, v, u, xf, uf, φf)〉
which represents the probability density at time t, of the particle position x, velocity
v, fluid velocity seen by the particle u, fluid velocity uf and its other properties φf at
location xf . This approach has been discussed at greater length by Minier & Peirano
(2001). Attention is focused in this present paper only on the one-point p.d.f. models
with fluid properties along the particle path considered as known external variables.

In two-phase non-isothermal turbulent flow, particles move under the influence
of the fluid drag force and exchange heat with the surrounding fluid. The simplest
choice for the variables of the state vector is (x, v, θ) with fluid velocity Ui and
temperature T being treated as external variables. Here θ is the phase space variable
corresponding to the particle temperature Tp. When the heat transfer is driven by the
temperature difference T − Tp, the derivation of a closed single-point p.d.f. equation
for 〈W (x, v, θ, t)〉 requires tackling closure problems posed by the unknown term 〈t′W 〉
in addition to the term 〈u′W 〉 (Zaichik 1999; Pandya & Mashayek 2002a), where t′
is the temperature fluctuation of the fluid along the particle path.

The closure problems involved in p.d.f. approaches are similar in nature to the well-
known turbulence closure problem. Therefore, it is not surprising that their solution
methods, so far, have been much influenced by the turbulence closure theories.
An attempt to solve the turbulence closure led Kraichnan to propose the direct
interaction approximation (DIA) (Kraichnan 1958, 1959) as a pioneering renormalized
perturbation theory (RPT), followed by other RPTs (Leslie 1973; McComb 1990).
The failure of the energetically consistent DIA in obtaining the Kolmogorov spectrum
led Kraichnan to propose the Lagrangian history direct interaction (LHDI) and the
concept of random Galilean transformation invariance (Kraichnan 1965). Kraichnan’s
Lagrangian framework was followed by Kaneda (1981) in developing the Lagrangian
renormalized approximation (LRA), for which an alternative derivation was given by
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Kida & Goto (1997). These theories, DIA and LHDI, have also found applications
in solving the closure problems in Vlasov plasma in the framework of the kinetic
approach (Orszag & Kraichnan 1967; Orszag 1968) and have provided the foundation
for Reeks’ works (Reeks 1980, 1983, 1991, 1992; Reeks & McKee 1991) on the kinetic
equation for the particle phase. Reeks successfully applied DIA and LHDI theories to
solve the closure problem posed by 〈u′W 〉 in the kinetic equation (Reeks 1980, 1992).
The LHDI closure solution is considered superior as it preserves the symmetry of the
phenomena of two-phase turbulent flow under the random Galilean transformation
(Reeks & McKee 1991; Reeks 1991, 1992). Recently, alternative derivations of the
same closed kinetic equation were provided by Pozorski & Minier (1999) using Van
Kampen’s method (Van Kampen 1974a, b, 1992), and by Hyland et al. (1999a) using
the Furutsu–Novikov–Donsker functional formula. This formula was first used by
Derevich & Zaichik (1989, 1990) and forms the basis in their work on two-phase
turbulent flows (Zaichik 1999; Zaichik et al. 1997a, b; Derevich 2000). Recently,
Pandya & Mashayek (2002a) have used the functional framework of Hyland et al.
(1999a) and have obtained the closed kinetic equation for a non-isothermal dispersed
phase by deriving expressions for 〈u′W 〉 and 〈t′W 〉.

The kinetic equation, when solved numerically with appropriate boundary and
initial conditions, predicts the probability density, from which various statistical
properties related to the particle phase in physical space–time (x, t) can be obtained.
In another method, taking various moments of the kinetic equation provides the
macroscopic equations governing the statistical properties of the particle phase in
(x, t) space. These equations are in the Eulerian framework and require solving
additional closure problems arising due to the process of taking the moments. For
example, the macroscopic equation for the mean velocity of the particle phase V i(x, t)
would contain the unknown term v′iv′j whose macroscopic equation would include the
higher-order unknown term v′iv′jv′k , and so on. Here v′i is a fluctuation in the particle
phase velocity and the overbar represents the number-density-weighted ensemble
average (for details see § 5). There are a few methods to tackle this type of closure
problem (Zaichik 1999; Derevich 2000; Swailes, Sergeev & Parker 1998).

The motion of the particle phase is also affected by the compressible nature of
the fluid. In compressible turbulent flows, the two new phenomena of turbulent
thermal diffusion and turbulent barodiffusion of isothermal particles are proposed
by Elperin, Kleeorin & Rogachevskii (1998) and were recently quantified (Pandya &
Mashayek 2002b) in the macroscopic equations obtained by the kinetic approach.
The compressibility effects of fluid on the non-isothermal particles are further studied
in this paper.

It is well established that direct numerical simulation (DNS) of two-phase turbulent
flows provides a rich source of data unfolding the physics of the phenomena of these
flows (see Mashayek 1998, 2000 and references cited therein). The DNS studies, at
present, are limited to simple flow geometries and these studies provide data, which
are very difficult if not impossible to obtain experimentally, for the assessment of
macroscopic equations in simple cases. As a part of this study, we generate DNS
data for the case of homogeneous shear flows with uniform temperature gradients
in which the particle temperature does not remain constant due to the involved heat
transfer. The details of the DNS method are presented in Shotorban, Mashayek &
Pandya (2002) and only the required data are presented in this paper.

In this paper, we consider non-isothermal two-phase turbulent flows in which
solid spherical particles exchange heat with the carrier fluid and do not collide with
each other. The specific objectives of the paper are: (i) to derive a closed kinetic
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equation for the non-isothermal particle phase in inhomogeneous flow by using
two different methods, namely LHDI and Van Kampen’s method, (ii) to propose
a new transformation constraint, related to random Galilean transformation, (iii)
to obtain macroscopic equations for the particle phase in an Eulerian framework,
(iv) to study the effect of fluid compressibility on the particle phase through the
macroscopic equations, and (v) to assess the macroscopic equations against the data
obtained from DNS performed on simple homogeneous shear flow with uniform
mean temperature gradients of the fluid phase. The governing equations for the
particle trajectory and temperature are given in § 2. In § 3, we discuss the Liouville
equations and the closure problems involved in the ensemble average of this equation.
The closure problem is solved, in § 4, for homogeneous flows by using the LHDI
and the method is then extended to non-homogeneous flows to propose a closed
kinetic equation. Also, in § 4, an alternative derivation of the same kinetic equation
is provided by using Van Kampen’s method and then the closed kinetic equation
is shown to be compatible with a newly proposed concept of extended random
Galilean transformation (ERGT) invariance. The kinetic equation is then used in
§ 5 to derive the Eulerian or macroscopic equations to describe the transport of
statistical properties of the particle phase. Further, algebraic relations are obtained
for cross-correlations related to particle and fluid phases. The effects of the fluid
compressibility on the particle phase are discussed in § 6, through the macroscopic
equations. In § 7, we first give a brief account of the DNS carried out to assess the
macroscopic equations and then compare the predictions of these equations to the
DNS data for homogeneous shear flow with uniform mean temperature gradient.
Finally, some concluding remarks are provided in § 8.

2. Lagrangian equations for the particles
For the mathematical formulation we assume point particles in a non-isothermal

turbulent flow. The Lagrangian equations governing the position Xi (also denoted
by vector X ), velocity Vi (also denoted by vector V ), and temperature Tp along the
trajectory of each spherical particle of mass mp and specific heat coefficient Cp can be
written

dXi

dt
= Vi, (2.1)

mp
dVi
dt

= Fi, (2.2)

mpCp
dTp
dt

= H, (2.3)

where Fi denotes the summation of all the forces acting on the particle and H is the
net rate of heat transfer to the particle. In writing (2.3), the temperature variation
inside the particle is neglected and thus the particle temperature is considered uniform.

The general form for Fi which includes the fluid drag, added mass, and Basset
history forces with the flow curvature effect was proposed by Maxey & Riley (1983)
and still remains open for further improvement (Kim, Elghobashi & Sirignano 1998).
Here, we consider only the fluid drag force acting on a particle with diameter d given
by

Fi =
CD

8
πd2ρ|U − V |(Ui − Vi), (2.4)
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where the drag coefficient, CD , can be taken as (see Clift, Grace & Weber 1978 for a
list of possible expressions for CD)

CD =
24

Rep
(1 + 0.15Re0.687

p ), (2.5)

for particle Reynolds number Rep = dρ|U − V |/µ < 1000. In these equations, U is
the instantaneous velocity of the fluid, with density ρ and viscosity µ, in the vicinity
of the particle.

The general expression for H has been derived by Michaelides & Feng (1994,
1996) for a rigid sphere with high thermal conductivity and at low Péclet number in
unsteady velocity and temperature fields of the fluid. This expression has terms which
are analogous to the drag, added mass, and history terms in the particle momentum
equation. Here we consider only the term analogous to the drag, written as

H = Nuπdκ(T − Tp), (2.6)

where κ is the thermal conductivity of the fluid, T is the fluid temperature in the
vicinity of the particle, and the Nusselt number, Nu, for the spherical particle is given
by the Ranz–Marshall correlation (Ranz & Marshall 1952)

Nu = 2 + 0.6Re0.5
p P r

0.33 ∀ Rep < 5× 104, (2.7)

with Pr = Cpµ/κ denoting the Prandtl number. Here Cp is specific heat of the fluid.
Using (2.4)–(2.7), Lagrangian equations (2.1)–(2.3) are now

dXi

dt
= Vi, (2.8)

dVi
dt

= βv(Ui − Vi), (2.9)

dTp
dt

= βθ(T − Tp) + Q, (2.10)

with

βv =
1 + 0.15Re0.687

p

τp
, τp =

ρpd
2

18µ
, βθ =

2 + 0.6Re0.5
p P r

0.33

3τpP rσ
, (2.11)

where τp is the particle momentum relaxation time or particle time constant, σ =
Cp/Cf , Cf is the specific heat of the fluid and we have also added a source term Q
for the particle temperature in (2.10). These Lagrangian equations (2.8)–(2.10) form
the basis of our derivation of the single-point p.d.f. equation.

3. The Liouville equation and closure problems
The main steps in obtaining a single-point p.d.f. equation are (i) forming an equation

for the phase-space density W and (ii) obtaining the closed form for the ensemble
average of the phase-space density equation by solving the closure problem involved.
In the present case, we seek to form an equation for W (x, v, θ, t) using the Liouville
theorem in conjunction with the Lagrangian equations (2.8)–(2.10). The ‘fine grained’
phase-space density W (x, v, θ, t) is defined using the Dirac delta function as (Pope
1985; Hyland et al. 1999a)

W (x, v, θ, t) = δ(X − x)δ(V − v)δ(Tp − θ), (3.1)
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and its ensemble average 〈 〉 over all the realizations represents the probability density
function 〈W (x, v, θ, t)〉. Here, x, v and θ are phase-space variables corresponding to
X ,V and Tp, respectively. The governing equation for W for collisionless particles
can be obtained from the Liouville theorem (or following the procedure given in
Hyland et al. 1999a) and using the Lagrangian equations (2.8)–(2.10), and is

∂W

∂t
+

∂

∂xi
[viW ] +

∂

∂vi
[βv(Ui − vi)W ] +

∂

∂θ
[βθ(T − θ)W + QW ] = 0. (3.2)

In (3.2), βv and βθ are stochastic functions in the case of turbulent flows due to the
fluctuations in Ui, and W is also stochastic in nature. The ensemble average of (3.2),

∂〈W 〉
∂t

+
∂

∂xi
[vi〈W 〉] +

∂

∂vi
[〈βv〉(〈Ui〉 − vi)〈W 〉] +

∂

∂θ
[〈βθ〉(〈T 〉 − θ)〈W 〉+ Q〈W 〉]

= − ∂

∂vi
[〈βv〉〈u′iW 〉]− ∂

∂θ
[〈βθ〉〈t′W 〉], (3.3)

poses closure problems due to the unknown correlations 〈u′iW 〉 and 〈t′W 〉 present on
the right-hand side of (3.3). Here, u′i and t′ are the fluctuating parts of Ui = 〈Ui〉+ u′i
and T = 〈T 〉+ t′ over the average value 〈Ui〉 and 〈T 〉, respectively. Also, in writing
(3.3), terms containing fluctuating parts β′v and β′θ are neglected, and from now
onwards we assume 〈βv〉 and 〈βθ〉 to be weak functions of 〈Rep〉 and consider them
as constants during the analysis; thus they are simply written as βv and βθ . In effect
we are considering

βv =
1 + 0.15〈Re0.687

p 〉
τp

, βθ =
2 + 0.6〈Re0.5

p 〉Pr0.33

3τpP rσ
(3.4)

in the Lagrangian equations (2.9) and (2.10).
In case of isothermal two-phase flow, (3.2) and (3.3) reduce to

∂W

∂t
+

∂

∂xi
[viW ] +

∂

∂vi
[βv(Ui − vi)W ] = 0 (3.5)

for W (x, v, t), and

∂〈W 〉
∂t

+
∂

∂xi
[vi〈W 〉] +

∂

∂vi
[βv(〈Ui〉 − vi)〈W 〉] = − ∂

∂vi
[βv〈u′iW 〉] (3.6)

for 〈W (xi, vi, t)〉, respectively. The closure problem in this case is due to the unknown
correlation 〈u′iW 〉 present on the right-hand side of (3.6). The unknown term Ji =
βv〈u′iW 〉 is known as the phase space diffusion current (Reeks 1991). The unknown
term h = βθ〈t′W 〉 in (3.3) is referred to as the phase-space heat current (Pandya
& Mashayek 2002a). The closed expressions for Ji and h are obtained by Zaichik
(1999) and Pandya & Mashayek (2002a) in the context of functional formalism using
the Furutsu–Novikov–Donsker formula. These expressions are exact in cases where
u′i and t′ are Gaussian random functions. In the next section, we use two different
methods, namely LHDI and Van Kampen’s method, to solve the closure problems as
these methods are not limited to the case where u′i and t′ are Gaussian functions.

4. Solutions to the closure problems
In the present context, the motivation for using LHDI and Van Kampen’s method

is their success in obtaining the closed kinetic equations for isothermal particle



212 R. V. R. Pandya and F. Mashayek

phase (Reeks 1992; Pozorski & Minier 1999). These methods belong to the class
of renormalized perturbation techniques, and, in a renormalized perturbation series,
the lowest order closure solution obtained for 〈u′W (x, v, t)〉 by these methods (Reeks
1992; Pozorski & Minier 1999) is identical to the solution obtained in the functional
formalism (Hyland et al. 1999a). These two methods are not restricted by the re-
quirement of Gaussian distributions for fluid flow variables along the particle path
which is the basis of the application of the Furutsu–Novikov–Donsker formula in
functional formalism (Zaichik 1999; Hyland et al. 1999a; Derevich 2000; Pandya &
Mashayek 2002a). In this section, the closure problems posed by unknown terms Ji
and h are tackled and solved in the framework of LHDI and Van Kampen’s method.
Then, we propose a new transformation constraint of extended random Galilean
transformation (ERGT) for non-isothermal flows and show that the obtained closure
solutions satisfy exactly the ERGT invariance properties.

4.1. Application of LHDI

4.1.1. Dispersed phase in turbulent flows with uniform mean

Here, we use LHDI to obtain the p.d.f. equation for the particle phase in turbulent
flows with constant values for fluid mean velocity 〈Ui〉 and mean temperature 〈T 〉.
For the sake of simplicity, we assume the temperature source term Q = 0. For this
case, (3.2) becomes

∂

∂t
W (x, v, θ, t)+

∂

∂xi
[viW ]+

∂

∂vi
[βv(〈Ui〉+u′i−vi)W ]+

∂

∂θ
[βθ(〈T 〉+t′−θ)W ] = 0. (4.1)

Equation (4.1) is a linear equation for W and its solution for known initial values for
W (x1, v1, θ1, t0) at time t = t0 is

W (x, v, θ, t) =

∫
dx1 dv1 dθ1Ĝ(x, v, θ, t; x1, v1, θ1, t0)W (x1, v1, θ1, t0), (4.2)

where Ĝ is Green’s function. An ensemble average of (4.2), when Ĝ is not correlated
with initial values of W , is

〈W (x, v, θ, t)〉 =

∫
dx1 dv1 dθ1G(x, v, θ, t; x1, v1, θ1, t0)〈W (x1, v1, θ1, t0)〉, (4.3)

where G = 〈Ĝ〉 is the average Green’s function. Equations (4.2)–(4.3) suggest that the
solution for W can be completely given by Green’s function when initial conditions
for W are known. Green’s function satisfies

∂

∂t
Ĝ(x, v, θ, t; x1, v1, θ1, t1) +

∂

∂xi
[viĜ] +

∂

∂vi
[βv(〈Ui〉+ u′i − vi)Ĝ]

+
∂

∂θ
[βθ(〈T 〉+ t′ − θ)Ĝ] = 0 (4.4)

∀ t > t1, and Ĝ(x, v, θ, t; x1, v1, θ1, t1) = δ(x− x1)δ(v − v1)δ(θ − θ1) when t = t1. Now,
the ensemble average of (4.4),

∂

∂t
G(x, v, θ, t; x1, v1, θ1, t1) +

∂

∂xi
[viG] +

∂

∂vi
[βv(〈Ui〉 − vi)G] +

∂

∂θ
[βθ(〈T 〉 − θ)G]

= − ∂

∂vi
βv〈u′iĜ〉 − ∂

∂θ
βθ〈t′Ĝ〉, (4.5)
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poses closure problems due to unknown correlations 〈u′iĜ〉 and 〈t′Ĝ〉, for which closed
expressions are obtained here via LHDI.

Before applying LHDI, we transform (4.4) to a new phase space (yi, wi, φ, t), using
the following transformations:

yi = xi +
vi

βv
(1− eβvt)− 〈Ui〉

βv
(1− eβvt)− 〈Ui〉t, (4.6)

wi = vi e
βvt + 〈Ui〉(1− eβvt), (4.7)

φ = θ eβθt + 〈T 〉(1− eβθt); (4.8)

it is written as

∂

∂t
Ĝ(y,w, φ, t; y1,w1, φ1, t1) = li(y,w, φ, t)[βvu

′
i(x, t)Ĝ] +M(y,w, φ, t)[βθt

′(x, t)Ĝ], (4.9)

where operators li and M are defined as

li(y,w, φ, t) = − (1− eβvt)

βv

∂

∂yi
− eβvt

∂

∂wi
, (4.10)

M(y,w, φ, t) = −eβθt
∂

∂φ
, (4.11)

and for the three-dimensional case we have

Ĝ(y,w, φ, t; y1,w1, φ1, t1) = exp (−(3βv + βθ)(t− t1))Ĝ(x, v, θ, t; x1, v1, θ1, t1). (4.12)

It follows from (4.9) that Ĝ and consequently the phase-space density W and the p.d.f.
〈W 〉 remain constant in the new phase space in the absence of turbulent fluctuations
in fluid velocity u′i and temperature t′. Also, the Lagrangian equations for the particle

dyi
dt

= u′i(1− eβvt), (4.13)

dwi
dt

= βv eβvtu′i, (4.14)

dφ

dt
= βθ eβθtt′, (4.15)

suggest that the particle remains at rest under the transformations (4.6)–(4.8) when
u′i = t′ = 0.

Now we use the method of LHDI to obtain a closed equation, from (4.9), for
the ensemble average of Ĝ(y,w, φ, t; y1,w1, φ1, t1) and then the resulting equation is
transformed back to the original phase space (xi, vi, θ, t) to obtain the required closed
equation for G(x, v, θ, t; x1, v1, θ1, t1).

Following LHDI, we introduce the generalized Green’s function Ĝ(y,w, φ, t|s;
y1,w1, φ1, t1|s1). This represents the response of the phase-space density W (y,w, φ, t|s)
to the perturbation which is applied at time s1 to a particle with a trajectory passing
through (y1,w1, φ1) at time t1. The argument (y,w, φ, t|s) of Ĝ means that the response
is measured at time s along the particle trajectory which passes through (y,w, φ) at
time t. The only restriction required is on measuring times (s, s1) such that s > s1. We
also introduce the generalized functions u′i(x, v, θ, t|s) and t′(x, v, θ, t|s) which represent
the fluctuating part of the fluid velocity and temperature measured at time s along
the particle trajectory which passes through (x, v, θ) at time t. In LHDI terminology,
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t is the ‘labelling time’ and s is the ‘measuring time’. For t 6= s, u′i(x, v, θ, t|s) and
t′(x, v, θ, t|s) have Lagrangian characteristics, and for t = s

u′i(x, v, θ, t|s) = u′i(x, t), t′(x, v, θ, t|s) = t′(x, t). (4.16)

The form of the equation for the generalized Green’s function remains the same as
that of equation (4.9) (Reeks 1992) and for s > s1 is written as

∂

∂t
Ĝ(y,w, φ, t|s; y1,w1, φ1, t1|s1)

= λli(y,w, φ, t)[βvu
′
i(y,w, φ, t|t)Ĝ(y,w, φ, t|s; y1,w1, φ1, t1|s1)]

+λM(y,w, φ, t)[βθt
′(y,w, φ, t|t)Ĝ(y,w, φ, t|s; y1,w1, φ1, t1|s1)], (4.17)

where we have replaced Ĝ in (4.9) by the generalized Green’s function and have used

u′i(y,w, φ, t|t) = u′i(x, t), t′(y,w, φ, t|t) = t′(x, t). (4.18)

In (4.17), we have introduced the usual perturbation expansion parameter λ for future
convenience and which is set equal to one at the end of the analysis.

For t 6= s, the governing equations for u′i(y,w, φ, t|s) and t′(y,w, φ, t|s) can be ob-
tained by using (4.13)–(4.15) and the fact that these velocity and temperature fields
measured at time s are independent of the particular point along the chosen phase-
space trajectory passing through (y,w, φ, t). Mathematically, this is

u′i(y + δy,w + δw, φ+ δφ, t+ δt|s) = u′i(y,w, φ, t|s), (4.19)

t′(y + δy,w + δw, φ+ δφ, t+ δt|s) = t′(y,w, φ, t|s), (4.20)

where δy, δw, δφ, and δt are small increments along the chosen trajectory. The final
equations when t 6= s are

∂

∂t
u′i(y,w, φ, t|s) = λβvu

′
j(y,w, φ, t|t)lj(y,w, φ, t)u′i(y,w, φ, t|s)

+λβθt
′(y,w, φ, t|t)M(y,w, φ, t)u′i(y,w, φ, t|s), (4.21)

∂

∂t
t′(y,w, φ, t|s) = λβvu

′
j(y,w, φ, t|t)lj(y,w, φ, t)t′(y,w, φ, t|s)

+λβθt
′(y,w, φ, t|t)M(y,w, φ, t)t′(y,w, φ, t|s). (4.22)

In (4.21)–(4.22), we have again introduced the perturbation parameter λ which is set
equal to one at the end of the analysis.

The ensemble average of (4.17),

∂

∂t
G(y,w, φ, t|s; y1,w1, φ1, t1|s1)

= λli(y,w, φ, t)[βv〈u′i(y,w, φ, t|t)Ĝ(y,w, φ, t|s; y1,w1, φ1, t1|s1)〉]
+λM(y,w, φ, t)[βθ〈t′(y,w, φ, t|t)Ĝ(y,w, φ, t|s; y1,w1, φ1, t1|s1)〉], (4.23)

poses closure problems due to the unknown correlations 〈u′iĜ〉 and 〈t′Ĝ〉, for which

we now obtain closed expressions. Also, equations (4.17) and (4.23) suggest that Ĝ
and G are independent of the measuring time. We expand the generalized Green’s
function, u′i(y,w, φ, t|t), and t′(y,w, φ, t|t) in powers of λ:

Ĝ(y,w, φ, t|s; y1,w1, φ1, t1|s1) = G(0)(y,w, φ, t|s; y1,w1, φ1, t1|s1)
+λĜ(1) + λ2Ĝ(2) + · · · , (4.24)
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u′i(y,w, φ, t|s) = u
′(0)
i (y,w, φ, t|s) + λu

′(1)
i + λ2u

′(2)
i + · · · , (4.25)

t′(y,w, φ, t|s) = t′(0)(y,w, φ, t|s) + λt′(1) + λ2t′(2) + · · · . (4.26)

Substituting these expansions in (4.17), (4.21) and (4.22), and equating the terms with
like powers in λ, we find that at zeroth order in λ

∂

∂t
G(0)(y,w, φ, t|s; y1,w1, φ1, t1|s1) = 0, (4.27)

∂

∂t
u
′(0)
i (y,w, φ, t|s) = 0, (4.28)

∂

∂t
t′(0)(y,w, φ, t|s) = 0. (4.29)

At first order in λ, the equation for the generalized Green’s function is obtained as

∂

∂t
Ĝ(1)(1, t|s; 2, t1|s1) = li(1, t)[βvu

′(0)
i (1, t|t)G(0)(1, t|s; 2, t1|s1)]

+M(1, t)[βθt
′(0)(1, t|t)G(0)(1, t|s; 2, t1|s1)], (4.30)

where we have introduced the 1 and 2 notation for arguments (y,w, φ) and (y1,w1, φ1),
respectively. Similarly, equations for the generalized Green’s function and the gener-
alized u′i and t′ can be written for higher orders in λ.

Equations (4.27)–(4.29) suggest that G(0), u′(0)
i and t′(0) are independent of labelling

times, and the solution for G(0) is

G(0)(y,w, φ, t|s; y1,w1, φ1, t1|s1) = δ(y − y1)δ(w − w1)δ(φ− φ1). (4.31)

Integrating (4.30) in the standard LHDI manner along the path t1|s1 → s1|s1 → s|s→
t|s, we have

Ĝ(1)(1, t|s; 2, t1|s1) =

∫ s1

t1

∫
dt2 d3G(0)(1, t|s; 3, t2|s1)[li(3, t2)βvu′(0)

i (3, t2|t2)

×G(0)(3, t2|s1; 2, t1|s1) +M(3, t2)βθt
′(0)(3, t2|t2)G(0)(3, t2|s1; 2, t1|s1)]

+

∫ s

s1

∫
dt2 d3G(0)(1, t|s; 3, t2|t2)[li(3, t2)βvu′(0)

i (3, t2|t2)

×G(0)(3, t2|t2; 2, t1|s1) +M(3, t2)βθt
′(0)(3, t2|t2)G(0)(3, t2|t2; 2, t1|s1)]

+

∫ t

s

∫
dt2 d3G(0)(1, t|s; 3, t2|s)[li(3, t2)βvu′(0)

i (3, t2|t2)
×G(0)(3, t2|s; 2, t1|s1) +M(3, t2)βθt

′(0)(3, t2|t2)G(0)(3, t2|s; 2, t1|s1)].
(4.32)

Similarly, solutions for higher-order Ĝ(n) can be written in terms of G(0), u′(0)
i and

t′(0), and symbolically presented as Fn(G
(0), u

′(0)
i , t′(0)) where n = 1, 2, 3, . . . . Therefore,

perturbation series (4.24) can be written

Ĝ = G(0) + λF1(G
(0), u

′(0)
i , t′(0)) + λ2F2(G

(0), u
′(0)
i , t′(0)) + · · · . (4.33)

The ensemble average of (4.33) gives G = 〈Ĝ〉 as a perturbation series having terms

containing G(0) and various moments of u′(0)
i and t′(0). This perturbation series can be

inverted using the method proposed by Kraichnan (1977) and G(0) can be written as
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a series in which each term contains G and various moments of u′(0)
i and t′(0). The

lowest-order term in the series equation for G(0) is equal to G, i.e.

G(0) = G+ λJ1 + λ2J2 + · · · , (4.34)

where Jn, n = 1, 2, . . . , denote higher-order terms containing G and moments of u′(0)
i

and t′(0).
Now, the use of the perturbation expansion given by (4.24) in 〈u′iĜ〉 and 〈t′Ĝ〉

allows us to write the perturbation series solutions as

〈u′i(1, t|t)Ĝ(1, t|s; 2, t1|s1)〉 = 〈u′i(1, t|t)G(0)(1, t|s; 2, t1|s1)〉
+λ〈u′i(1, t|t)Ĝ(1)(1, t|s; 2, t1|s1)〉+ · · · , (4.35)

〈t′(1, t|t)Ĝ(1, t|s; 2, t1|s1)〉 = 〈t′(1, t|t)G(0)(1, t|s; 2, t1|s1)〉
+λ〈t′(1, t|t)Ĝ(1)(1, t|s; 2, t1|s1)〉+ · · · , (4.36)

where the first term on the right-hand side of (4.35) and (4.36) is equal to zero as
G(0) is not a stochastic function which is followed by (4.27). In (4.35) and (4.36),
substituting for Ĝ(1) from (4.32), averaging, changing every labelling time from t2 to t
in every G(0), u(0)

i and t′(0) (Reeks 1992) and then replacing G(0) by the series given by
(4.34), we obtain at the lowest order

〈u′i(1, t|t)Ĝ(1, t|s; 2, t1|s1)〉
=

∫ s

s1

∫
dt2 d3G(1, t|s; 3, t|t2)[〈u′i(1, t|t)lj(3, t2)βvu′(0)

j (3, t|t2)〉G(3, t|t2; 2, t1|s1)
+〈u′i(1, t|t)M(3, t2)βθt

′(0)(3, t|t2)〉G(3, t|t2; 2, t1|s1)]
+two other similar terms, (4.37)

〈t′(1, t|t)Ĝ(1, t|s; 2, t1|s1)〉
=

∫ s

s1

∫
dt2 d3G(1, t|s; 3, t|t2)[〈t′(1, t|t)lj(3, t2)βvu′(0)

j (3, t|t2)〉G(3, t|t2; 2, t1|s1)
+〈t′(1, t|t)M(3, t2)βθt

′(0)(3, t|t2)〉G(3, t|t2; 2, t1|s1)]
+two other similar terms. (4.38)

Substituting (4.37)–(4.38) in (4.23) and for λ = 1, s = t and s1 = t1, we obtain an
equation for G(1, t; 2, t1) = G(1, t|t; 2, t1|t1) as

∂

∂t
G(1, t|t; 2, t1|t1) = li(1, t)

∫ t

t1

dt2[〈βvu′i(1, t|t)lj(1, t2)βvu′(0)
j (1, t|t2)〉G(1, t|t; 2, t1|t1)

+〈βvu′i(1, t|t)M(1, t2)βθt
′(0)(1, t|t2)〉G(1, t|t; 2, t1|t1)]

+M(1, t)

∫ t

t1

dt2[〈βθt′(1, t|t)lj(1, t2)βvu′(0)
j (1, t|t2)〉G(1, t|t; 2, t1|t1)

+〈βθt′(1, t|t)M(1, t2)βθt
′(0)(1, t|t2)〉G(1, t|t; 2, t1|t1)]. (4.39)

In writing (4.39) we have used

G(1, t|t; 3, t|t2) = G(1, t|t; 3, t|t) = δ(1− 3), (4.40)

G(1, t|t2; 2, t1|t1) = G(1, t|t; 2, t1|t1), (4.41)

as G is independent of the measuring time. The right-hand side of (4.39) is still in
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terms of the primitive variables u′i(0) and t′(0). For renormalization we replace u′i(0)
and t′(0) by u′i and t′ in (4.39), transform it back to the original phase space (x, v, θ, t),
multiply the resulting equation by the initial value 〈W (x1, v1, θ1, 0)〉 at time t1 = 0,
integrate over the phase-space variables (x1, v1, θ1), and use (4.3) to obtain a closed
transport equation for the p.d.f. 〈W (x, v, θ, t)〉:(

∂

∂t
+

∂

∂xi
vi +

∂

∂vi
βv(〈Ui〉 − vi) +

∂

∂θ
βθ(〈T 〉 − θ)

)
〈W (x, v, θ, t)〉

=
∂

∂vi

[
∂

∂xj

{∫ t

0

dt2
(1− e−βv(t−t2))

βv
〈β2

v u
′
i(x, t)u

′
j(x, v, θ, t|t2)〉

}
+
∂

∂vj

{∫ t

0

dt2 e−βv(t−t2)〈β2
v u
′
i(x, t)u

′
j(x, v, θ, t|t2)〉

}
+
∂

∂θ

{∫ t

0

dt2 e−βθ(t−t2)〈βvβθu′i(x, t)t′(x, v, θ, t|t2)〉
}

−
∫ t

0

dt2
(1− e−βv(t−t2))

βv

〈
∂βvu

′
i(x, t)

∂xj
βvu

′
j(x, v, θ, t|t2)

〉]
〈W 〉

+
∂

∂θ

[
∂

∂xj

{∫ t

0

dt2
(1− e−βv(t−t2))

βv
〈βvβθt′(x, t)u′j(x, v, θ, t|t2)〉

}
+
∂

∂vj

{∫ t

0

dt2 e−βv(t−t2)〈βvβθt′(x, t)u′j(x, v, θ, t|t2)〉
}

+
∂

∂θ

{∫ t

0

dt2 e−βθ(t−t2)〈βθβθt′(x, t)t′(x, v, θ, t|t2)〉
}

−
∫ t

0

dt2
(1− e−βv(t−t2))

βv

〈
∂βθt

′(x, t)
∂xj

βvu
′
j(x, v, θ, t|t2)

〉]
〈W 〉

≡ − ∂

∂vi
〈βvu′iW 〉 − ∂

∂θ
〈βθt′W 〉. (4.42)

The right-hand side of (4.42) gives the expressions for 〈βvu′iW 〉 and 〈βθt′W 〉, which
can be written in the form

〈βvu′iW 〉 = −
[
∂

∂xk
λki +

∂

∂vk
µki +

∂

∂θ
ωi − γi

]
〈W 〉, (4.43)

〈βθt′W 〉 = −
[
∂

∂xk
Λk +

∂

∂vk
Πk +

∂

∂θ
Ω − Γ

]
〈W 〉, (4.44)

where

λki = 〈∆xk(x, v, θ, t|0)βvu
′
i(x, t)〉, µki = 〈∆vk(x, v, θ, t|0)βvu

′
i(x, t)〉, (4.45)

γi =

〈
∆xk(x, v, θ, t|0)

∂βvu
′
i(x, t)

∂xk

〉
, ωi = 〈∆θ(x, v, θ, t|0)βvu

′
i(x, t)〉, (4.46)

Λk = 〈∆xk(x, v, θ, t|0)βθt
′(x, t)〉, Πk = 〈∆vk(x, v, θ, t|0)βθt

′(x, t)〉, (4.47)

Γ =

〈
∆xk(x, v, θ, t|0)

∂βθt
′(x, t)
∂xk

〉
, Ω = 〈∆θ(x, v, θ, t|0)βθt

′(x, t)〉. (4.48)
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Hereafter, these tensors are referred to as ‘various tensors’. In these equations,
∆xk(x, v, θ, t|0) and ∆vk(x, v, θ, t|0) are changes in the position and velocity of the
particle due to the fluid fluctuating force per unit mass, βvu

′
i(x, v, θ, t|t2), along the

trajectory of the particle starting at time zero and passing through (x, v, θ) at time t.
Similarly, ∆θ(x, v, θ, t|0) represents the change in the temperature of the particle due
to βθt

′(x, v, θ, t|t2) along the trajectory of the particle starting at time zero and passing
through (x, v, θ) at time t. These changes in position velocity, and temperature are
given by

∆xk(x, v, θ, t|0) =

∫ t

0

dt2
(1− e−βv(t−t2))

βv
βvu

′
k(x, v, θ, t|t2), (4.49)

∆vk(x, v, θ, t|0) =

∫ t

0

dt2 e−βv(t−t2)βvu
′
k(x, v, θ, t|t2), (4.50)

∆θ(x, v, θ, t|0) =

∫ t

0

dt2 e−βθ(t−t2)βθt
′(x, v, θ, t|t2). (4.51)

The various tensors require equations for various correlations of u′i and t′, having
the general form of 〈b′i(x, t)b′j(x, v, θ, t|t2)〉. These correlations represent the statistical
properties of the fluid flow variables along the particle path and their prediction in
the general flow situation remains a challenge (Minier 1999). In principle, the closed
equations for these correlations can be obtained from (4.21)–(4.22) in the LHDI
framework (Orszag 1968; Reeks 1992) by following a method similar to that imple-
mented earlier to derive the equation for G. Here, we do not derive these equations
and only present approximate expressions for these correlations, which are used later
in this work and are accurate enough in homogeneous flows. These correlations
〈b′i(x, t)b′j(x, v, θ, t|t2)〉 are approximated by exponential functions with integral time

scales T̃ bibj = 1/βbibj ,

〈b′i(x, t)b′j(x, v, θ, t|t2)〉 = 〈b′i(x, t)b′j(x, t)〉 exp(βbibj (t2 − t)) (4.52)

where summation is not implied for repeated indices i and j on the right-hand side
of (4.52). For example,

〈u′i(x, t)t′(x, v, θ, t|t2)〉 = 〈u′i(x, t)t′(x, t)〉 exp(βuit(t2 − t)). (4.53)

Before closing this section, we should mention that the uniform mean flow 〈Ui〉 and
mean temperature 〈T 〉 do not contribute to the various tensors and their effects
appear in the equation for 〈W 〉 only through the convective terms in (4.42) for the
homogeneous case under consideration.

4.1.2. Dispersed phase in inhomogeneous turbulent flows

Now, we generalize the LHDI method, presented in the previous section for flows
with uniform mean velocity and temperature, to inhomogeneous flows. The first step
is to transform (3.2) for W (x, v, θ, t) to a phase space (y,w, φ, t) in which W (y,w, φ, t)
remains constant in the absence of turbulent fluctuations u′i and t′. Consider the
Lagrangian equations for the particle position zi, velocity żi, and temperature ψ
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without the fluctuating terms:

dzi
ds

= żi, (4.54)

dżi
ds

= βv(〈Ui〉 − żi), (4.55)

dψ

ds
= βθ(〈T 〉 − ψ) + Q, (4.56)

from which (y,w, φ) can be obtained and defined as

yi = zi(x, v, θ, t|s = 0), wi = żi(x, v, θ, t|s = 0), φ = ψ(x, v, θ, t|s = 0). (4.57)

Here y, w, and φ are the position, velocity and temperature of the particle, respectively,
at time s = 0 along the trajectory that is governed by (4.54)–(4.56) and passes through
(x, v, θ) at time t. It should be noted that when 〈Ui〉 and 〈T 〉 are constants and Q = 0,
expressions for yi, wi and φ (as defined by (4.57)) are given by (4.6)–(4.8). In the
transformed phase space, the equation for Green’s function Ĝ is given by (4.9) with
general definitions for operators li and M

li(y,w, φ, t) = −∂yk
∂vi

∂

∂yk
− ∂wk

∂vi

∂

∂wk
− ∂φ

∂vi

∂

∂φ
, (4.58)

M(y,w, φ, t) = −∂yk
∂θ

∂

∂yk
− ∂wk

∂θ

∂

∂wk
− ∂φ

∂θ

∂

∂φ
. (4.59)

Following a procedure identical to that described in the previous section, expressions
for 〈βvu′iW 〉 and 〈βθt′W 〉 can be obtained and are written in the original phase space
(x, v, θ, t) as

−〈βvu′iW (x, v, θ, t)〉
=

∫ t

0

dt2

[〈
βvu

′
i(x, t)

(
Gjk(t2|t) ∂

∂xk
+ Ġjk(t2|t) ∂

∂vk
+ Gj(t2|t) ∂

∂θ

)
×βvu′j(x, v, θ, t|t2)

〉
〈W (x, v, θ, t)〉+

〈
βvu

′
i(x, t)

(
Gθ(t2|t) ∂

∂θ

)
×βθt′(x, v, θ, t|t2)

〉
〈W (x, v, θ, t)〉

]
, (4.60)

−〈βθt′W (x, v, θ, t)〉
=

∫ t

0

dt2

[〈
βθt
′(x, t)

(
Gjk(t2|t) ∂

∂xk
+ Ġjk(t2|t) ∂

∂vk
+ Gj(t2|t) ∂

∂θ

)
×βvu′j(x, v, θ, t|t2)

〉
〈W (x, v, θ, t)〉+

〈
βθt
′(x, t)

(
Gθ(t2|t) ∂

∂θ

)
×βθt′(x, v, θ, t|t2)

〉
〈W (x, v, θ, t)〉

]
. (4.61)
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Here Gjk , Ġjk , Gj and Gθ are defined as

Gjk(t2|t) =
∂

∂wj
zk(y,w, φ, t2|t) ≡ ∂xk

∂vt2−tj

, (4.62)

Ġjk(t2|t) =
d

dt
Gjk(t2|t) ≡ ∂vk

∂vt2−tj

, (4.63)

Gj(t2|t) =
∂

∂wj
ψ(y,w, φ, t2|t) ≡ ∂θ

∂vt2−tj

, (4.64)

Gθ(t2|t) =
∂

∂φ
ψ(y,w, φ, t2|t) ≡ ∂θ

∂θt2−t
. (4.65)

where the superscript (t2 − t) to any variable represents the value of that variable at
time t2.

The governing equations for Gjk , Ġjk , Gj and Gθ as obtained from the Lagrangian
equations (4.54)–(4.56) are

d2

dt2
Gjk(t2|t) + βv

d

dt
Gjk − βvGji ∂〈Uk〉

∂xi
= δjkδ(t− t2), (4.66)

d

dt
Gj(t2|t)− βθGjk ∂〈T 〉

∂xk
− Gjk ∂Q

∂xk
+ βθGj = 0, (4.67)

d

dt
Gθ(t2|t) + βθG

θ = δ(t− t2). (4.68)

Equations (4.66) and (4.67) suggest that Gjk , Ġjk and Gj depend only on the time
variable for linear variation of Q, mean fluid velocity and temperature and when βv
and βθ are constants. For such flows, expressions for the phase-space diffusion and
heat currents as given by (4.60) and (4.61) can be written in the forms

βv〈u′iW 〉 = −
[
∂

∂xk
λki +

∂

∂vk
µki +

∂

∂θ
ωi − γi

]
〈W 〉, (4.69)

βθ〈t′W 〉 = −
[
∂

∂xk
Λk +

∂

∂vk
Πk +

∂

∂θ
Ω − Γ

]
〈W 〉. (4.70)

Here, various tensors λki, µki, ωi, γi, Λk , Πk , Ω, and Γ are

λki = β2
v

∫ t

0

dt2〈u′i(x, t)u′j(x, v, θ, t|t2)〉Gjk(t2|t), (4.71)

µki = β2
v

∫ t

0

dt2〈u′i(x, t)u′j(x, v, θ, t|t2)〉 d

dt
Gjk(t2|t), (4.72)

ωi = β2
v

∫ t

0

dt2〈u′i(x, t)u′j(x, v, θ, t|t2)〉Gj(t2|t)

+βvβθ

∫ t

0

dt2〈u′i(x, t)t′(x, v, θ, t|t2)〉Gθ(t2|t), (4.73)

γi = β2
v

∫ t

0

dt2

〈
∂u′i(x, t)
∂xk

u′j(x, v, θ, t|t2)
〉
Gjk(t2|t), (4.74)
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Λk = βvβθ

∫ t

0

dt2〈t′(x, t)u′j(x, v, θ, t|t2)〉Gjk(t2|t), (4.75)

Πk = βvβθ

∫ t

0

dt2〈t′(x, t)u′j(x, v, θ, t|t2)〉 d

dt
Gjk(t2|t), (4.76)

Ω = βvβθ

∫ t

0

dt2〈t′(x, t)u′j(x, v, θ, t|t2)〉Gj(t2|t) + β2
θ

∫ t

0

dt2〈t′(x, t)t′(x, v, θ, t|t2)〉Gθ(t2|t),

(4.77)

Γ = βvβθ

∫ t

0

dt2

〈
∂t′(x, t)
∂xk

u′j(x, v, θ, t|t2)
〉
Gjk(t2|t). (4.78)

It should be noted that these tensors, except ωi and Ω, can be written in the forms
identical to those in (4.45)–(4.48), but with more general definitions of ∆xk , ∆vk and
∆θ:

∆xk(x, v, θ, t|0) =

∫ t

0

dt2Gjk(t2|t)βvu′j(x, v, θ, t|t2), (4.79)

∆vk(x, v, θ, t|0) =

∫ t

0

dt2Ġjk(t2|t)βvu′j(x, v, θ, t|t2), (4.80)

∆θ(x, v, θ, t|0) =

∫ t

0

dt2G
θ(t2|t)βθt′(x, v, θ, t|t2). (4.81)

The expressions for ωi and Ω are

ωi = 〈∆θ(x, v, θ, t|0)βvu
′
i(x, t)〉+ 〈∆θuj (x, v, θ, t|0)βvu

′
i(x, t)〉, (4.82)

Ω = 〈∆θ(x, v, θ, t|0)βθt
′(x, t)〉+ 〈∆θuj (x, v, θ, t|0)βθt

′(x, t)〉, (4.83)

where ∆θuj (x, v, θ, t|0), in the second term on the right-hand side of (4.82)–(4.83),
represents the change in temperature of the particle due to βvu

′
j(x, v, θ, t|t2) along the

trajectory of the particle starting at time zero and passing through (x, v, θ) at time t.
This term ∆θuj (x, v, θ, t|0) was equal to zero in the homogeneous case described in the
previous section.

Before closing this section on LHDI, we should emphasize that LHDI generates
terms containing λki and γi in (4.69), and Λk and Γ in (4.70) which are responsible
for certain new phenomena related to turbulent thermal diffusion and turbulent
barodiffusion. Also, LHDI generates exact results for simple flow situations which
are manifestations of RGT and ERGT. The new phenomena and compatibility of
LHDI with ERGT are discussed in greater detail later in this paper. The DIA and
closure represented by the classical Fokker–Planck equation failed to capture the
terms containing λki and γi and were not found compatible with RGT (Reeks 1991).

4.2. Application of Van Kampen’s method

In this section, we use Van Kampen’s method, the success of which in tackling the
closure problem for isothermal two-phase flow has been established by Pozorski &
Minier (1999). Van Kampen (1974a, b) originally proposed a cumulant expansion
method for the solution of linear stochastic differential equations written for a vector
process Z:

dZ(t)

dt
= [A0 + αA1(t)]Z(t), (4.84)
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where the linear operators A0 and A1 are deterministic and stochastic in nature,
respectively, and α is the level of fluctuations. A0 is constant in time, and when the
ensemble average of A1 is time dependent, the proposed solution is

d〈Z(t)〉
dt

=

[
A0 + α〈A1(t)〉+ α2

∫ t

0

〈A′1(t) esA0A′1(t− s)〉 e−sA0 ds

]
〈Z(t)〉 (4.85)

for Kubo number ατc � 1. Here A′1(t) = A1 − 〈A1〉 and τc is the autocorrelation time
for A′1. In the case of a single random oscillator problem where 〈A1(t)〉 = 0 and A′1(t)
has Gaussian distribution, this approximate equation (4.85) yields the exact solution
(Van Kampen 1974a). This method was then used by Van Kampen (1992) to solve
the closure problems posed by the nonlinear stochastic equations, for N variables
Θi, i = 1, 2, . . . , N, of the form

dΘi

dt
= Ki(Θ1, Θ2, . . . , ΘN, Sn, t), (4.86)

after transforming it to an equivalent linear equation for the phase-space density
W (θi, t) = W (θ1, θ2, . . . , θN, t), written as

∂

∂t
W (θi, t) +

∂

∂θi
[Ki(θ1, θ2, . . . , θN, Sn, t)W (θi, t)] = 0. (4.87)

Here, the Ki are functions of the Θi and some number M of stochastic variables Sn,
n = 1, 2, . . . ,M, and the θi are phase-space variables corresponding to the Θi. Let K0

i

and K1
i represent the stationary and stochastic parts of Ki, respectively. Then the

comparison of (4.84) and (4.87) suggests that

A0 = − ∂

∂θi
(K0

i ), A1 = − ∂

∂θi
(K1

i ). (4.88)

Substituting A0 and A1 from (4.88) into (4.85) and replacing Z by W , yields

∂〈W 〉
∂t

= − ∂

∂θi
(K0

i 〈W 〉) +
∂

∂θi

∫ t

0

ds

〈
K1
i (θ, t) esA0

∂

∂θj
K1
j (θ, t− s)

〉
e−sA0〈W 〉 (4.89)

when 〈K1
i 〉 = 0. For the phase-space density, the action of esA0 on any function f(θ)

is given by (Van Kampen 1992; Pozorski & Minier 1999)

esA0f(θ) = f(θ−s)
d(θ−s)
d(θ)

, (4.90)

where θ represents the value at time t and θs represents the value at time t+ s along
the trajectory which is determined from

dθi
dt

= K0
i (θ1, θ2, . . . , θN), (4.91)

and d(θ−s)/d(θ) stands for the Jacobian. Repeated application of (4.90) allows us to
simplify (4.89) and the final general form of the closed transport equation for the
probability density function is (Van Kampen 1992; Pozorski & Minier 1999)

∂〈W 〉
∂t

+
∂

∂θi
(K0

i 〈W 〉)

=
∂

∂θi

∫ t

0

ds

〈
K1
i (θ, t)

d(θ−s)
d(θ)

∂

∂θ−sj
K1
j (θ−s, t− s)

〉
d(θ)

d(θ−s)
〈W 〉. (4.92)
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We now translate the present problem of a non-isothermal particle phase in turbu-
lent flows which are governed by the Lagrangian equations (2.8)–(2.10). For these
equations, we have

θ =

 x

v

θ

 , K0 =

 v

βv(〈U〉 − v)
βθ(〈T 〉 − θ) + Q

 , K1 =

 0

βvu
′

βθt
′

 , (4.93)

and 〈W 〉 = 〈W (x, v, θ, t)〉. Also, for any function h = h[x(x−s, v−s), v(x−s, v−s),
θ(x−s, v−s, θ−s)],

∂h

∂v−sj
=

∂h

∂xk

∂xk

∂v−sj
+
∂h

∂vk

∂vk

∂v−sj
+
∂h

∂θ

∂θ

∂v−sj
, (4.94)

∂h

∂θ−s
=
∂h

∂θ

∂θ

∂θ−s
. (4.95)

Equation (4.92) is now simplified by using (4.93)–(4.95) and is written(
∂

∂t
+

∂

∂xi
vi +

∂

∂vi
βv(〈Ui〉 − vi) +

∂

∂θ
[βθ(〈T 〉 − θ) + Q]

)
〈W (x, v, θ, t)〉

=
∂

∂vi

{∫ t

0

ds
d(θ−s)
d(θ)

[
∂xk

∂v−sj

〈
βvu

′
i(x, t)

∂

∂xk
βvu

′
j(θ
−s, t2)

〉
+
∂vk

∂v−sj

〈
βvu

′
i(x, t)

∂

∂vk
βvu

′
j(θ
−s, t2)

〉
+

∂θ

∂v−sj

〈
βvu

′
i(x, t)

∂

∂θ
βvu

′
j(θ
−s, t2)

〉
+
∂θ

∂θ−s

〈
βvu

′
i(x, t)

∂

∂θ
βθt
′(θ−s, t2)

〉]
d(θ)

d(θ−s)
〈W 〉

}
+
∂

∂θ

{∫ t

0

ds
d(θ−s)
d(θ)

[
∂xk

∂v−sj

〈
βθt
′(x, t)

∂

∂xk
βvu

′
j(θ
−s, t2)

〉
+
∂vk

∂v−sj

〈
βθt
′(x, t)

∂

∂vk
βvu

′
j(θ
−s, t2)

〉
+

∂θ

∂v−sj

〈
βθt
′(x, t)

∂

∂θ
βvu

′
j(θ
−s, t2)

〉
+
∂θ

∂θ−s

〈
βθt
′(x, t)

∂

∂θ
βθt
′(θ−s, t2)

〉]
d(θ)

d(θ−s)
〈W 〉

}
, (4.96)

where the argument (θ−s, t2) is used to denote the argument (x−s, v−s, θ−s, t− s). Now,
changing variable s to t− t2 and using (4.62)–(4.65) yields

∂xk

∂v−sj
=

∂xk

∂vt2−tj

= Gjk(t2|t), (4.97)

∂vk

∂v−sj
=

∂vk

∂vt2−tj

= Ġjk(t2|t), (4.98)

∂θ

∂v−sj
=

∂θ

∂vt2−tj

= Gj(t2|t), (4.99)

∂θ

∂θ−s
=

∂θ

∂θt2−t
= Gθ(t2|t), (4.100)

where Gjk(t2|t), Gj(t2|t), and Gθ(t2|t) are governed by (4.66)–(4.68). In the case when
the Jacobian is a function of only the time variable, changing variable s to t− t2 on
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the right-hand side of (4.96) and using (4.97)–(4.100) gives expressions for βv〈u′iW 〉
and βθ〈t′W 〉 which are identical to the expressions obtained by LHDI as given by
(4.69) and (4.70).

Also in this framework, for the case of homogeneous flow with constant values for
〈Ui〉 and 〈T 〉, and Q = 0,

xi = x−si +
v−si
βv

(1− e−βvs) + 〈Ui〉s+
〈Ui〉
βv

(e−βvs − 1), (4.101)

vi = v−si e−βvs − 〈Ui〉(e−βvs − 1), (4.102)

θ = θ−se−βθs − 〈T 〉(e−βθs − 1). (4.103)

Using (4.101)–(4.103), equation (4.96) can be simplified and the resulting expression
is identical to (4.42) that is obtained by the LHDI method for homogeneous flow.

4.3. Extended random Galilean transformation invariance

The kinetic equation for the particle phase in the case of isothermal two-phase
flow is given by (3.6) and the closure problem posed by this equation is due to
the presence of the unknown term ji = βv〈u′iW (x, v, t)〉, written in vector notation
as j = βv〈u′W (x, v, t)〉. Reeks (1991) studied the isothermal case and showed that
the usual closed form for βv〈u′W (x, v, t)〉 = −µ∂〈W 〉/∂v as used in the classical
Fokker–Planck equation does not preserve the symmetry of the random Galilean
transformation (RGT), as proposed by Kraichnan (1965) in the context of the
turbulence closure problem.

In RGT, a uniform translational velocity u0 is added to each realization of turbulent
fluid flow, and when u0 has a Gaussian distribution over many realizations the
statistical properties of this flow field are related to the statistical properties of the
flow field without u0 and governed by some exact transformation rules. Any closure
scheme is said to be compatible with RGT invariance if it satisfies the transformation
rules. Using this RGT concept, Reeks (1991) obtained the general form for j and, later,
Reeks (1992) formally derived the same equation by using Kraichnan’s Lagrangian
history direct interaction approximation (Kraichnan 1965).

Here, we propose an extended random Galilean transformation (ERGT) invari-
ance, and further show that the kinetic equation (4.42) for a non-isothermal particle
phase, as obtained by LHDI, is compatible with the constraint of ERGT. In the
ERGT, we add a uniform translational velocity u0 and a uniform temperature θ0 to
each realization of fluid velocity and temperature, respectively. Both u0 and θ0 have
Gaussian distributions with zero mean and have finite correlation 〈u0θ0〉 over many
realizations of the fluid velocity and temperature. The ensemble-average properties
related to phase-space densities WG(x, v, θ, t) and W (x, v, θ, t) are related by exact
transformation rules and any closure scheme satisfying the rules is said to be com-
patible with ERGT. Here WG is the phase-space density for particles in a new flow
field with u0 and θ0.

Now, we apply the ERGT concept to (2.8)–(2.10) with Q = 0 and by considering βv
and βθ to be constants. The addition of u0 and θ0 to fluid velocity and temperature,
respectively, changes the Lagrangian equations (2.8)–(2.10) with Q = 0 to

dXG

dt
= V G,

dV G

dt
= βv(UG−V G) + βvu0,

dTpG
dt

= βθ(TG−TpG) + βθθ0, (4.104)
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where subscript G indicates the value of variables after adding u0 and θ0. Under the
conditions

U (X , t) = UG(XG, t), T (X , t) = TG(XG, t), (4.105)

X , V , Tp, and W are related to XG, V G, TpG, and WG by the following relations:

X = XG − u0

∫ t

0

(1− e−βvs) ds, V = V G − u0(1− e−βvt), Tp = TpG − θ0(1− e−βθt)

(4.106)
and

WG(x, v, θ, t) = W

(
x− u0

∫ t

0

(1− e−βvs) ds, v − u0(1− e−βvt), θ − θ0(1− e−βθt), t
)

= exp[iu0 · k + iθ0p]W (x, v, θ, t), (4.107)

where

k = i

[∫ t

0

(1− e−βvs) ds
∂

∂x
+ (1− e−βvt)

∂

∂v

]
, p = i(1−e−βθt)

∂

∂θ
, i2 = −1. (4.108)

The governing equation for 〈WG〉 is[
∂

∂t
+

∂

∂xi
vi +

∂

∂vi
βv(〈Ui〉 − vi) +

∂

∂θ
βθ(〈T 〉 − θ)

]
〈WG〉

= − ∂

∂vi
βv[〈u′iWG〉+ 〈u0iWG〉]− ∂

∂θ
βθ[〈t′WG〉+ 〈θ0WG〉], (4.109)

with the added unknown correlations 〈u0iWG〉 and 〈θ0WG〉 for which we now obtain
exact expressions. Here u0i is the ith component of velocity u0.

Equation (4.107) suggests that

〈u0WG〉 = −i
∂

∂k
〈exp[iu0 · k + iθ0p]〉〈W (x, v, θ, t)〉 (4.110)

and

〈θ0WG〉 = −i
∂

∂p
〈exp[iu0 · k + iθ0p]〉〈W (x, v, θ, t)〉. (4.111)

With an isotropic Gaussian distribution for u0 and θ0,

〈exp[iu0 · k + iθ0p]〉 = exp[− 1
2
(〈u2

0〉k · k + 〈θ2
0〉p2)− pk · 〈u0θ0〉], (4.112)

where 〈u2
0〉 = 〈u0 · u0〉/3. Substituting from (4.112) in (4.110) and (4.111) and using

the relation (4.107), we obtain

〈u0WG〉 = −〈u2
0〉
[∫ t

0

(1− e−βvs) ds
∂

∂x
+ (1− e−βvt)

∂

∂v

]
〈WG〉

−〈θ0u0〉(1− e−βθt)
∂〈WG〉
∂θ

, (4.113)

or

〈u0iWG〉 = −〈u2
0〉
[∫ t

0

(1− e−βvs) ds
∂

∂xi
+ (1− e−βvt)

∂

∂vi

]
〈WG〉

−〈θ0u0i〉(1− e−βθt)
∂〈WG〉
∂θ

, (4.114)
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and

〈θ0WG〉 = −〈θ0u0i〉
[∫ t

0

(1− e−βvs) ds
∂

∂xi
+ (1− e−βvt)

∂

∂vi

]
〈WG〉

−〈θ2
0〉(1− e−βθt)

∂〈WG〉
∂θ

, (4.115)

which are the exact closed expressions for 〈u0iWG〉 and 〈θ0WG〉.
Now we obtain the LHDI expressions for 〈u0iWG〉 and 〈θ0WG〉. The LHDI solution

to closure problems of (4.109) can be obtained from (4.42) by substituting u′i + u0i,
t′ + θ0 and 〈WG〉 in place of u′i, t′ and 〈W 〉, respectively, and using the condition that
u′i and t′ are not correlated to u0i and θ0. The right-hand side of (4.42) and

〈u0i(x, t)u0j(x, v, θ, t|t2)〉 =
δij

3
〈u0ku0k〉 ≡ δij〈u2

0〉, (4.116)

〈u0i(x, t)θ0(x, v, θ, t|t2)〉 = 〈θ0(x, t)u0i(x, v, θ, t|t2)〉 = 〈θ0u0i〉, (4.117)

〈θ0(x, t)θ0(x, v, θ, t|t2)〉 = 〈θ2
0〉, (4.118)

give us

〈u0iWG〉 = − ∂

∂xi

{
〈u2

0〉〈WG〉
∫ t

0

dt2(1− e−βv(t−t2))

}
− ∂

∂vi

{
βv〈u2

0〉〈WG〉
∫ t

0

dt2 e−βv(t−t2)

}
− ∂

∂θ

{
βθ〈θ0u0i〉〈WG〉

∫ t

0

dt2 e−βθ(t−t2)

}
, (4.119)

〈θ0WG〉 = − ∂

∂xj

{
〈θ0u0j〉〈WG〉

∫ t

0

dt2(1− e−βv(t−t2))

}
− ∂

∂vj

{
βv〈θ0u0j〉〈WG〉

∫ t

0

dt2 e−βv(t−t2)

}
− ∂

∂θ

{
βθ〈θ2

0〉〈WG〉
∫ t

0

dt2 e−βθ(t−t2)

}
. (4.120)

Since 〈u2
0〉, 〈θ2

0〉 and 〈θ0u0i〉 are independent of x, v and θ, a change of variable from
(t − t2) to s in (4.119) and (4.120) results in expressions which are identical to the
exact equations (4.114) and (4.115). This proves that the closure solutions as obtained
by the LHDI method are compatible with the proposed extended random Galilean
transformation.

5. Macroscopic (Eulerian) equations for particle-phase
The kinetic equation (3.3), along with the closed expressions given by (4.69) and

(4.70), represents the closed transport equation for the probability density function in
phase space x, v, θ and t. The numerical solution to this equation can be obtained
by various methods, such as the Monte Carlo method, finite difference method,
or the path integral method (Minier & Peirano 2001; Wehner & Wolfer 1987;
Pandya & Mashayek 2001). The direct computation of the closed kinetic equation is
computationally more expensive when there are many independent variables. Also, the
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computation becomes more difficult when the LHDI equations for various correlations
of u′i and t′ appearing in (4.71)–(4.78), having the general form 〈b′i(x, t)b′j(x, v, θ, t|t2)〉,
are included. Another avenue, computationally less expensive, to extract useful infor-
mation from the kinetic equation is to obtain macroscopic equations by taking various
moments of the kinetic equation. These equations represent the transport equations
for statistical quantities of interest for the particle phase in physical (Eulerian) space
(x, t) and are also known as the ‘fluid’ equations for the dispersed phase. These ‘fluid’
equations along with the algebraic expression of the form (4.52) for various corre-
lations of u′i and t′ are easier to compute than the full kinetic equation, but contain
less information.

The macroscopic equations governing the mean properties N(x, t), V i(x, t), and
Θ(x, t) for the particle phase are obtained by taking various moments of the prob-
ability density function equation (3.3) after substituting for 〈u′iW 〉 and 〈t′W 〉 which
are given by (4.69) and (4.70), respectively. Here, N, V i and Θ are the mean number
density, the density-weighted ensemble average (referred to as the mean) of the vel-
ocity and temperature of the particle phase, respectively, at any location x at time t.
These mean properties are defined as

N =

∫
〈W 〉 dv dθ, V j =

1

N

∫
vj〈W 〉 dv dθ, Θ =

1

N

∫
θ〈W 〉 dv dθ, (5.1)

and their transport equations are obtained from the kinetic equation, and written

∂N

∂t
+

∂

∂xi
[NV i] = 0, (5.2)

∂V j

∂t
+ V i

∂V j

∂xi
+
∂v′iv′j
∂xi

= βv(〈Uj〉 − V j)− [v′iv′j + λ̄ij]
∂

∂xi
lnN − ∂

∂xk
λ̄kj + γj , (5.3)

∂Θ

∂t
+ V i

∂Θ

∂xi
+
∂v′iθ′

∂xi
= βθ(〈T 〉 −Θ) + Q− [v′iθ′ + Λi]

∂

∂xi
lnN − ∂

∂xi
Λi + Γ . (5.4)

Here, λ̄kj , γj , Λi, and Γ are the density-weighted means of λkj , γj , Λi, and Γ ,
respectively. The density-weighted mean of any quantity, for example λkj , is defined
as

λ̄kj =
1

N

∫
λkj〈W 〉 dv dθ, (5.5)

and when λkj is independent of v and θ, λ̄kj = λkj . Reeks identified the term ∂v′iv′j/∂xi
in (5.3) responsible for the transport of particles due to the change in turbulence
intensity in space. This phenomenon, known as turbophoresis, was first recognized
by Caporaloni et al. (1975) and formally derived by Reeks (1983) using LHDI in the
p.d.f. approach. Also, Reeks (1992) referred to the term γj in (5.3) as the body force
per unit mass of the dispersed phase, arising from inhomogeneities in the carrier fluid
turbulence field. Recently, Pandya & Mashayek (2002b) have shown that the last
two terms, −(∂/∂xk)λ̄kj + γj , present on the right-hand side of (5.3) are responsible
for the two phenomena of turbulent thermal diffusion and turbulent barodiffusion
in compressible fluid flow. These two phenomena were first recognized by Elperin,
Kleeorin & Rogachevskii (1996, 1998). The effects of fluid compressibility on the
particle phase are discussed further in detail in the next section.
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Equation (5.4) can also be written

Θ = − 1

βθ

∂v′iθ′

∂xi
+〈T 〉+ Q

βθ
− 1

βθ
[v′iθ′+Λi]

∂

∂xi
lnN− 1

βθ

∂

∂xi
Λi+

1

βθ
Γ − 1

βθ

DΘ

Dt
, (5.6)

where
D

Dt
=

∂

∂t
+ V i

∂

∂xi
. (5.7)

The first term on the right-hand side of (5.6) is similar to the turbophoresis term. It is
easy to see from (5.11) (see below) that v′iθ′ is proportional to ωi, which is written (see
(4.73)) in terms of 〈u′i(x, t)u′j(x, v, t|t1)〉 and 〈u′i(x, t)t′(x, v, t|t1)〉, and thus the spatial
variations in fluid turbulent velocity correlation and turbulent heat flux contribute
to heating or cooling of the particle phase. The term (1/βθ)Γ on the right-hand
side of (5.6) represents the temperature source term arising from inhomogeneities in
turbulent fluctuations of the fluid temperature field and is

1

βθ
Γ = βv

∫ t

0

dt1

〈
∂t′(x, t)
∂xk

u′j(x, v, t|t1)
〉
Gjk(x1, t1; x, t), (5.8)

where the overbar represents the density-weighted ensemble average. This term is
analogous to γj in (5.3).

The macroscopic equations for the higher-order statistical properties

v′iv′j =
1

N

∫
(vi−V i)(vj−V j)〈W 〉 dv dθ, v′iθ′ =

1

N

∫
(vi−V i)(θ−Θ)〈W 〉 dv dθ, (5.9)

which are required to close the above set of equations (5.2)–(5.4), can be written

∂v′jv′n
∂t

+ V i

∂

∂xi
v′jv′n +

1

N

∂

∂xi
[Nv′iv′jv′n]

= −v′iv′j ∂V n

∂xi
− v′iv′n ∂V j

∂xi
− 2βvv

′
jv
′
n − λ̄kj ∂V n

∂xk
− λ̄kn ∂V j

∂xk
+ µjn + µnj , (5.10)

∂v′jθ′

∂t
+ V i

∂

∂xi
v′jθ′ +

1

N

∂

∂xi
[Nv′iv′jθ′]

= −βvv′jθ′ − βθv′jθ′ − v′iv′j ∂Θ∂xi − v
′
iθ
′ ∂V j

∂xi
− λ̄kj ∂Θ

∂xk
− Λk ∂V j

∂xk
+ ω̄j +Πj. (5.11)

Also, the equation for the fluctuating temperature intensity of the particle phase,

θ′θ′ =
1

N

∫
(θ −Θ)(θ −Θ)〈W 〉 dv dθ, (5.12)

can be written

∂θ′θ′

∂t
+ V i

∂

∂xi
θ′θ′ +

1

N

∂

∂xi
[Nv′iθ′θ′] = −2βθθ′θ′ − 2v′iθ′

∂Θ

∂xi
− 2Λi

∂Θ

∂xi
+ 2Ω. (5.13)

While deriving (5.10), (5.11) and (5.13), we have assumed the density-weighted averages
of various tensors to be equal to their respective instantaneous values, e.g. λ̄ij = λij .
These equations, (5.10), (5.11) and (5.13), contain unknown third-order correlations
v′iv′jv′n, v′iv′jθ′, and v′iθ′θ′. The equations for the third-order correlations would contain
unknown fourth-order correlations and so on. Thus we are faced again with the well-
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known turbulence closure problem. To obtain the closed set of macroscopic equations
at third order, the fourth-order correlations are written in terms of the second-order
correlations by incorporating the quasi-normal condition. Incorporation of certain
approximations, suggested by Zaichik (1999), can further simplify the equations for
third-order correlations and result in algebraic expressions in terms of the second-
order correlations. Another method of obtaining algebraic expressions for third-order
correlations is based on the Chapman–Enskog method (Swailes et al. 1998; Derevich
2000). In this method, the kinetic or p.d.f. equation is solved analytically to obtain an
approximate expression for the p.d.f. and then expressions for third-order correlations
are derived from the known approximate expressions. We do not use this here to
derive the transport equations or algebraic expressions for third-order correlations
but leave it for future work.

Reeks (1993) studied the macroscopic equation for v′iv′j for the case of simple
homogeneous shear flow and showed that the usual Boussinesq approximation for
v′iv′j is not suitable. Instead, an algebraic expression, or constitutive relation, for v′iv′j is
constituted of two parts: (i) a homogeneous component whose values are calculated
as if the local fluid flow field were homogeneous and (ii) a deviatoric component
involving terms proportional to the mean shearing of both phases. Now we obtain,
in the simplest possible way, the algebraic expressions for v′iθ′ and θ′θ′ and show that
these relations are composed of homogeneous and deviatoric components.

In the flow situations where the particle spatial density, shear stresses, v′iθ and θ′θ′
at equilibrium are spatially uniform, neglecting the left-hand side of (5.11) and (5.13)
allows us to write

βvv
′
jθ
′ + βθv

′
jθ
′ + v′iθ′

∂V j

∂xi
= −v′iv′j ∂Θ∂xi − λ̄kj

∂Θ

∂xk
− Λk ∂V j

∂xk
+ ω̄j +Πj, (5.14)

and

βθθ′θ′ =

[
−v′iθ′ ∂Θ∂xi − Λi

∂Θ

∂xi

]
+ Ω. (5.15)

The algebraic equation (5.14) can be further solved to obtain an explicit expression
for v′iθ′. Defining the tensor

Aji = (βv + βθ)δij +
∂V j

∂xi
, (5.16)

and its inverse tensor as A−1
nj such that A−1

nj Aji = δni, we obtain from (5.14)

v′nθ′ =A−1
nj

[
−v′iv′j ∂Θ∂xi − λ̄kj

∂Θ

∂xk
− Λk ∂V j

∂xk

]
+A−1

nj

[
ω̄j +Πj

]
. (5.17)

The term Ω in (5.15) and the terms in the second bracket on the right-hand side of
(5.17) are non-zero even when the mean flow of particle and fluid is uniform. Thus
parts of these terms contain the homogeneous components and the remaining parts
along with the first terms on the right-hand side of (5.15) and (5.17) constitute the
deviatoric components.

The fluctuation correlations between fluid and particle flow variables can be ob-
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tained from the closed expressions for 〈u′iW 〉 and 〈t′W 〉:

βvu
′
iv
′
j = −λ̄ki ∂V j

∂xk
+ µji, (5.18)

βvu
′
iθ
′ = −λ̄ki ∂Θ

∂xk
+ ω̄i, (5.19)

βθt′v′i = −Λk ∂V i

∂xk
+Πi, (5.20)

βθt′θ′ = −Λk ∂Θ
∂xk

+ Ω. (5.21)

These correlations can be used to account for the ‘back effects’ of particles on the
fluid turbulence (Zaichik 1999). Here we should point out, that similar to equations
(5.15) and (5.17), part of the second terms on the right-hand side of these algebraic
expressions (5.18)–(5.21) accounts for the homogeneous components and the remain-
ing part along with the first terms on the right-hand side constitute the deviatoric
components.

6. Effects of fluid compressibility
The closed kinetic equation and the macroscopic equations remain valid in the case

of compressible fluid flows. The fluid compressibility affects the statistical properties of
fluid velocity and temperature field which appear in these equations through various
tensors. Also, the compressibility effects appear through the particle Reynolds number
in the expressions for βv and βθ . In the case of particles dispersed in an ideal gas
(with gas constant R and pressure P ) obeying the equation of state P = ρRT ,
compressibility leads to the phenomena of turbulent thermal diffusion and turbulent
barodiffusion of particles. These phenomena for isothermal particles, which do not
exchange heat with the surrounding fluid, were first described by Elperin et al. (1996,
1998) and recently identified in the macroscopic equation for the particle-phase mean
velocity derived from the p.d.f. equation (Pandya & Mashayek 2002b).

We now discuss some more effects of fluid compressibility on a non-isothermal
particle phase dispersed in ideal gas. Substitution for 〈u′iW 〉 and 〈t′W 〉 from (4.69)–
(4.70) in (3.3) results in a closed kinetic equation. In this resulting equation, the
terms (∂/∂vi)(γi〈W 〉) and (∂/∂θ)(Γ 〈W 〉) represent the convection in the phase space
vi and θ, respectively, arising due to the fluid turbulence fluctuations. Thus γi and
Γ are parts of drift coefficients representing the ‘drift velocities’ of 〈W 〉 along the
phase-space variables vi and θ, respectively. Before giving the approximate expressions
for these drift velocities, we present approximate expressions for 〈u′i(x, t)∂u′j(x, t)/∂xj〉,〈t′(x, t)∂u′j(x, t)/∂xj〉, and Gjk . For low-Mach-number flows, the approximate expres-
sion

∂u′i/∂xi ≈ −u′i∂ ln〈ρ〉/∂xi (6.1)

as obtained from the continuity equation (Elperin et al. 1998, 1997), and the ensemble
average of equation of state (〈P 〉 ≈ R〈ρ〉〈T 〉) allow us to write〈

u′i(x, t)
∂u′j(x, t)
∂xj

〉
≈ −〈u′i(x, t)u′j(x, t)〉∂ ln〈ρ〉

∂xj

≈ 〈u′i(x, t)u′j(x, t)〉
[

1

〈T 〉
∂〈T (x, t)〉
∂xj

− 1

〈P 〉
∂〈P (x, t)〉
∂xj

]
(6.2)
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and 〈
t′(x, t)

∂u′j(x, t)
∂xj

〉
≈ −〈t′(x, t)u′j(x, t)〉∂ ln〈ρ〉

∂xj

≈ 〈t′(x, t)u′j(x, t)〉
[

1

〈T 〉
∂〈T (x, t)〉
∂xj

− 1

〈P 〉
∂〈P (x, t)〉
∂xj

]
. (6.3)

Now we expand the solution of (4.66) around an isotropic case and write it in the
form

Gji = G0
ji + G1

ji. (6.4)

Here G0
ji represents the response function for the isotropic case and satisfies the

equation
d2

dt2
G0
ji + βv

d

dt
G0
ji = δjiδ(t− t′), (6.5)

whereas G1
ji accounts for the effect of shear ∂βv〈Ui〉/∂xk and satisfies

d2

dt2
G1
ji + βv

d

dt
G1
ji − G0

jk

∂βv〈Ui〉
∂xk

= 0. (6.6)

Equation (6.5) with the initial conditions for Gij and dGij/dt equal to zero for i 6= j
suggests that

G0
ji(t− t1) = G0(t− t1)δij = δij(1− e−βv(t−t1))/βv. (6.7)

We write the expressions for γi and Γ as

γi = β2
v

∫ t

0

dt1Gjk(t1|t) ∂

∂xk
〈u′i(x, t)u′j(x, v, θ, t|t1)〉

−β2
v

∫ t

0

dt1Gjk(t1|t)
〈
∂u′j(x, v, θ, t|t1)

∂xk
u′i(x, t)

〉
, (6.8)

Γ = βvβθ

∫ t

0

dt1Gjk(t1|t) ∂

∂xk
〈t′(x, t)u′j(x, v, θ, t|t1)〉

−βvβθ
∫ t

0

dt1Gjk(t1|t)
〈
∂u′j(x, v, θ, t|t1)

∂xk
t′(x, t)

〉
. (6.9)

Now, the second term on the right-hand side of (6.8) and (6.9) can be further simplified
by substituting for Gij from (6.4) and (6.7), and introducing the usual exponential

forms with integral time scales T̃ L and T̃ θ for

〈u′i(x, t)u′j(x, v, θ, t|t1)〉 = 〈u′i(x, t)u′j(x, t)〉e−(t−t1)/T̃ L , (6.10)

〈t′(x, t)u′j(x, v, θ, t|t1)〉 = 〈t′(x, t)u′j(x, t)〉e−(t−t1)/T̃ θ . (6.11)

The resulting expressions are

γi = β2
v

∫ t

0

dt1Gjk(t1|t) ∂

∂xk
〈u′i(x, t)u′j(x, v, θ, t|t1)〉

−β2
v

∫ t

0

dt1G
1
jk(t1|t)

〈
∂u′j(x, v, θ, t|t1)

∂xk
u′i(x, t)

〉
−
〈
∂u′k(x, t)
∂xk

u′i(x, t)
〉
βv

{
T̃ L[1− e(−t/T̃ L)] +

T̃ L

βvT̃ L + 1
[e−t(βv+1/T̃ L) − 1]

}
,

(6.12)
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Γ = βvβθ

∫ t

0

dt1Gjk(t1|t) ∂

∂xk
〈t′(x, t)u′j(x, v, θ, t|t1)〉

−βvβθ
∫ t

0

dt1G
1
jk(t1|t)

〈
∂u′j(x, v, θ, t|t1)

∂xk
t′(x, t)

〉
−βθ

〈
∂u′k(x, t)
∂xk

t′(x, t)
〉{

T̃ θ[1− e(−t/T̃ θ)] +
T̃ θ

βvT̃ θ + 1
[e−t(βv+1/T̃ θ) − 1]

}
.

(6.13)

Using these expressions for γi and Γ along with the expressions for λkj and Λk , the
last two terms of (5.3) and (5.4) can be written

−∂λkj
∂xk

+ γj = −β2
v

∫ t

0

dt1〈u′j(x, t)u′k(x, v, θ, t|t1)〉∂Gki(t1|t)∂xi

−β2
v

∫ t

0

dt1G
1
ki(t1|t)

〈
∂u′k(x, v, θ, t|t1)

∂xi
u′j(x, t)

〉
−
〈
∂u′k(x, t)
∂xk

u′j(x, t)
〉

×βv
{
T̃ L

[
1− e(−t/T̃ L)

]
+

T̃ L

βvT̃ L + 1

[
e−t(βv+1/T̃ L) − 1

]}
, (6.14)

−∂Λk
∂xk

+ Γ = −βvβθ
∫ t

0

dt1〈t′(x, t)u′j(x, v, θ, t|t1)〉∂Gjk(t1|t)∂xk

−βvβθ
∫ t

0

dt1G
1
jk(t1|t)

〈
∂u′j(x, v, θ, t|t1)

∂xk
t′(x, t)

〉
− βθ

〈
∂u′k(x, t)
∂xk

t′(x, t)
〉

×
{
T̃ θ

[
1− e(−t/T̃ θ))

]
+

T̃ θ

βvT̃ θ + 1

[
e−t(βv+1/T̃ θ) − 1

]}
. (6.15)

The expressions for 〈u′i∂u′k/∂xk〉 and 〈t′∂u′k/∂xk〉 for compressible gas have already
been derived and are given by (6.2)–(6.3). Thus, the last term in (6.12)–(6.15) represents
the turbulent thermal and pressure effects on the drift velocities of 〈W 〉 along the
phase-space variables vi and θ, mean velocity V j , and mean temperature Θ. These

effects, in the case of V j , are known as turbulent thermal diffusion and turbulent
barodiffusion (Elperin et al. 1998; Pandya & Mashayek 2002b).

7. Model assessments
The macroscopic partial differential equations (5.2)–(5.4), (5.10)–(5.11) and (5.13)

govern the evolution of statistical properties of the particle phase in Eulerian physical
space and time. The cross-correlations between fluid and particle flow variables are
governed by the algebraic equations (5.18)–(5.21). These equations are used here
to predict the non-isothermal dispersed phase in homogeneous shear flow having
constant values for mean velocity and temperature gradients. The predictions are
compared with the results from our DNS study conducted in parallel with this
modelling effort.

The details of the DNS will appear in Shotorban et al. (2002), and here we only
provide a brief description. The simulations are carried out for an incompressible
carrier phase with the energy equation decoupled from the continuity and momentum
equations. Our numerical procedure for the carrier phase is similar to that adopted
by Rogers, Moin & Reynolds (1986) who have considered the transport of a passive
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Figure 1. Temporal evolution of (a) Reynolds stresses 〈u′iu′j〉 and (b) dissipation rate ε, for the
carrier phase.

scalar. Here, we treat the carrier-phase temperature as a passive scalar that has no
effect on the evolution of the velocity field, but not the other way around. Only low
mass loading ratios are considered so that the effects of the particles on the fluid can
be neglected, i.e. one-way coupling.

The simulations are performed for a homogeneous shear flow, while a uniform
mean temperature gradient is implemented in the energy equation. For simulating
the carrier phase 128 × 128 × 128 grid points are used, with a uniform mean shear
rate ∂〈U1〉/∂x2 ≡ α, where from now onwards we consider streamwise, cross-stream
and spanwise directions along the x1-, x2- and x3- axes, respectively. For this velocity
field, three different cases are considered for the mean temperature gradient. Case 1
refers to a constant mean temperature gradient imposed in the cross-stream direction,
i.e. ∂〈T 〉/∂x2 is non-zero. Case 2 refers to a constant mean temperature gradient
(∂〈T 〉/∂x3) imposed in the spanwise direction. Case 3 refers to a constant mean
temperature gradient (∂〈T 〉/∂x1) imposed in the streamwise direction.

The particle phase is simulated by computing the Lagrangian trajectory, velocity and
temperature, from equations (2.8)–(2.10), of a large number of particles (Np = 105)
after finding the carrier phase velocity and temperature at each time step from
DNS. These particles are introduced in the flow domain at time t = 0 with velocity
and temperature equal to the fluid velocity and temperature in their vicinity. The
statistical properties of the particle phase are then calculated by averaging over
the computed Lagrangian trajectories. It should be emphasized that in the DNS
study all the variables are normalized by reference length (Lf), density (ρf), velocity
(Uf) and temperature (Tf) scales. Thus the results presented in this section are
in non-dimensional form; we do not change the present notation to represent the
non-dimensional flow variables related to particle and fluid phases.

The predictions from macroscopic equations and algebraic equations require certain
statistical properties of the carrier phase, which are presented in figures 1–3. Since the
flow is homogeneous, the statistical properties depend only on time and the temporal
evolution of the Reynolds stresses, 〈u′iu′j〉, and dissipation rate, ε, are shown in figure 1
for α = 2. At time t = 0, the flow is isotropic and the shear stress 〈u′1u′2〉 evolves in
time, from the initial value of zero, due to the imposed uniform mean shear rate. The
temporal evolution of the temperature fluctuation intensity 〈t′t′〉 for the three cases is
shown in figure 2. In all of these cases, the mean temperature gradient is equal to 2.
Another statistical property, namely, turbulent temperature flux 〈u′it′〉, for the three
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Figure 2. Temporal evolution of fluid temperature intensity 〈t′t′〉 for three different cases.
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Figure 3. Temporal evolution of 〈u′it′〉 for (a) case 1, (b) case 2, and (c) case 3.

cases is shown in figure 3. In cases 1 and 3, the flow and temperature fields have
mirror symmetry about the plane (x1, x2) giving 〈u′3t′〉 = 0 which is also observed in
our DNS data. In case 2, we observe that 〈u′1t′〉 and 〈u′2t′〉 are equal to zero. These
observations are consistent with the model proposed by Rogers, Mansour & Reynolds
(1989) based on their DNS predictions, i.e.

〈u′it′〉 = −Dij ∂〈T 〉
∂xj

, (7.1)

where D13 = D23 = D31 = D32 = 0 for the present configuration of homogeneous shear
flow. Only non-zero components of 〈u′1t′〉 are shown in figure 3.

The predictions also require prior knowledge of various integral time scales (T̃ bibj =
1/βbibj ). For the velocity field we take the usual approximation (Hyland et al. 1999a, b)

T̃ uiuj = 0.482
k

ε
. (7.2)

Approximate values for the remaining time scales are obtained from the DNS data.
For example, 〈u′1(x, t)t′(x, v, θ, t|t1)〉 and 〈u′1(x, t)t′(x, t)〉 are needed to calculate T̃ u1t.
For the homogeneous shear flow, we take 〈u′1(x, t)t′(x, v, θ, t|t1)〉 equal to 〈u′1(t)t′(t1)〉
where u′1(t) and t′(t1) are fluid velocity and temperature fluctuations, as seen by the
particle at times t and t1, respectively, and the average is taken over all the particles.
Since the present turbulent flow is unsteady, 〈u′1(t)t′(t1)〉 would depend on t1. We
take t1 = 1, calculate 〈u′1(t)t′(t1)〉/〈u′1(x, t)t′(x, t)〉 for various t > t1 and obtain an
approximate value for T̃ u1t such that exp(−(t− t1)/T̃ u1t) represents approximately the
curve 〈u′1(t)t′(t1)〉/〈u′1(x, t)t′(x, t)〉 vs. t − t1. The curve and the exponential function
are shown in figure 4(a) for case 1. Also, the curves for 〈t′(t)t′(t1)〉/〈t′(x, t)t′(x, t)〉 vs.
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Case βtt βu1t βu2t βu3t βtu1 βtu2 βtu3

1 1.9 1.6 2.35 – 2.0 1.6 –
2 1.9 – – 2.35 – – 1.6
3 1.9 2.0 2.35 – 1.3 1.0 –

Table 1. Values of βbibj .
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Figure 4. (a) Lagrangian velocity–temperature correlation function 〈u′1(t)t′(t1)〉/〈u′1(x, t)t′(x, t)〉 for
case 1, (b) Lagrangian temperature–temperature correlation function 〈t′(t)t′(t1)〉/〈t′(x, t)t′(x, t)〉 for
case 1.

t− t1 as obtained from DNS data and the exponential form are shown in figure 4(b)
for case 1. Though the value of T̃ u1t is a function of t1 in this unsteady case, we
take this value for T̃ u1t for all values of t1 during the model predictions. The inverse
of the required integral time constants (βbibj = 1/T̃ bibj ) obtained for different cases
are shown in table 1. Recently, Pope (2002) has shown, for the self-similar state of
homogeneous turbulent shear flow, that autocorrelations of fluid particle velocity can
be made stationary by properly scaling the time. A similar approach can be followed
to obtain, from DNS data, autocorrelations of fluid properties along the particle
path and to assess its stationarity. Here we do not perform such calculation due to
insufficient DNS data.

For the homogeneous shear flow, (5.2)–(5.3) give N = constant and Vi = 〈Ui〉,
which are also used for calculation of the particle phase in DNS. For cases 1 and 2,
equation (5.4) is satisfied for Θ = 〈T 〉 when Q = 0. For case 3, Θ = 〈T 〉 is a solution
in the presence of a source term Q = V 1∂Θ/∂x1. These results are consistent with
the source term used in the present DNS which is designed to produce Θ = 〈T 〉 and
homogeneity.

In the case of homogeneous flow, macroscopic equation (5.10) reduces to

dv′jv′n
dt

= −v′iv′j ∂V n

∂xi
− v′iv′n ∂V j

∂xi
− 2βvv

′
jv
′
n − λ̄kj ∂V n

∂xk
− λ̄kn ∂V j

∂xk
+ µ̄jn + µ̄nj . (7.3)

These equations along with the initial conditions at t = 0 for vivj , and Vi = 〈Ui〉 =
αδi1x2 are numerically solved using a fourth-order-accurate Runge–Kutta method.
The required initial conditions are given in table 2 and the analytical expressions for
various tensors λij and µij are given in Appendix A. Also, the algebraic relation for

u′iv′j given by (5.18) is computed using the analytical expressions for λij and µij .
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τp v′1v′1 v′2v′2 v′3v′3 v′1v′2
0.3 1.0246 0.9868 0.9833 2.861× 10−02

0.15 1.0249 0.9810 0.9917 2.629× 10−02

τp v′1θ′ v′2θ′ v′3θ′ θ′θ′
0.3 3.465× 10−2 4.263× 10−2 −1.647× 10−2 3.0035

Table 2. Initial values for v′i v′j , v′iθ′ and θ′θ′ at time t = 0.
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Figure 5. Temporal evolution of particle Reynolds stresses v′i v′j and fluid–particle velocity

correlations u′iu′j (a, b) τp = 0.3; (c, d ) τp = 0.15.

The temporal evolution of v′iv′j and u′iv′j for τp = 0.3 is shown in figure 5(a, b),
and for τp = 0.15 in figure 5(c, d ). The corresponding DNS data are also shown
in the figure, and indicate encouraging agreements with the predicted results. The
predictions appear more accurate for the particle with smaller time constant τp = 0.15
than with τp = 0.3. This could possibly be due to preferential concentration of particles
(Mashayek 1998) with larger value of τp and resulting modifications in the statistics
of fluid seen by particles. These modifications seem not to be captured properly by
exponential form (4.52) with integral time scale given by (7.2). It should be noted that
we have not shown certain components of tensors v′iv′j and u′iv′j as their values remain

equal to zero. These components are v′2v′3, v′1v′3, u′1v′3, u′2v′3, u′3v′1, and u′3v′2.
The macroscopic equations (5.11) and (5.13) simplify to

∂v′jθ′

∂t
= −βvv′jθ′ − βθv′jθ′ − v′iv′j ∂Θ∂xi − v

′
iθ
′ ∂V j

∂xi
− λ̄kj ∂Θ

∂xk
− Λk ∂V j

∂xk
+ ω̄j +Πj, (7.4)

and
∂θ′θ′

∂t
= −2βθθ′θ′ − 2v′iθ′

∂Θ

∂xi
− 2Λi

∂Θ

∂xi
+ 2Ω, (7.5)
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Figure 6. Temporal evolution of θ′θ′ and v′iθ′ for the three different cases:
(a, b) case 1, (c, d ) case 2, and (e, f ) case 3.

in the case of homogeneous flows. These simplified equations (7.4)–(7.5) with initial
conditions (see table 2) are solved, by a fourth-order-accurate Runge–Kutta method,
using the analytical expressions for λki, Λk , ωi, Ω and Πi (Appendix B) and the values
for v′iv′j obtained from the predictions. These predictions for the three different cases
are shown in figure 6 for particle time constant τp = 0.3. Figure 6(a, b) shows the

temporal evolution of θ′θ′ and v′iθ′ for case 1. Similarly, the temporal evolution of

θ′θ′ and v′iθ′ for case 2 are shown in figure 6(c, d ), and for case 3 in figure 6(e, f ). The

corresponding DNS data are also shown in the figure. In case 1, v′3θ′ = 0; in case 2,

v′1θ′ = v′2θ′ = 0; and in case 3, v′3θ′ = 0. The predicted results are consistent with the
DNS data and these zero values are not shown in figure 6. This figure suggests that
the present predictions are in good agreement with the DNS data and capture the
temporal behaviour of θ′θ′ and v′iθ′.

The algebraic relations (5.19)–(5.21) for fluid–particle cross-correlations are also
computed and their temporal evolution along with the DNS data is shown in figure 7
for the three different cases. Figure 7(a, b) shows the predictions for case 1. Similarly
figure 7(c, d ) and figure 7(e, f ) show the predictions for cases 2 and 3, respectively.
Overall, the predictions are in good agreement with the DNS results. Again, those
components of v′i t′ and u′iθ′ having values equal to zero, consistent with DNS data,
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are not shown in figure 7. Also, further comparisons (not shown here) indicated good
agreements for particle statistical properties with DNS data for smaller particles at
τp = 0.15.

8. Concluding remarks
A common situation of two-phase non-isothermal turbulent flow has been con-

sidered in an attempt to derive ‘fluid-like’ equations, in a Eulerian framework, for
statistical properties of the particle phase from the first-principle Lagrangian equa-
tions for such a situation. Of the two well-known available approaches (RANS and
p.d.f.) whose end results are Eulerian equations, the single-point p.d.f. approach
has been considered for the description of the non-isothermal particle phase with
the known fluid flow properties as external variables. This approach is more suit-
able for deriving the boundary conditions for the particle phase (Alipchenkov et
al. 2001) and the transition from the Lagrangian to Eulerian framework occurs in
a natural manner without an artifact. Certain closure problems have appeared at
various stages during the derivation of the particle Eulerian equations. The closure
problems appeared first, in the form of unknown correlations 〈u′W 〉 and 〈t′W 〉,
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in the equation for the ensemble average of phase-space density 〈W 〉 which is
known as the kinetic or p.d.f. equation. These problems have been solved with
both Kraichnan’s LHDI approach and Van Kampen’s method, which resulted in
identical closed kinetic or p.d.f. equations, also shown to be compatible with the
newly proposed transformation constraint of extended random Galilean transfor-
mation. These closed solutions, for 〈u′W 〉 and 〈t′W 〉, then raised another closure
problem requiring the statistical properties of the fluid flow variables as seen by
the particles, in the form 〈b′i(x, t)b′j(x, v, θ, t|t2)〉. In principle, the governing equa-
tions for these correlations can be obtained in the LHDI framework. Instead of
providing the LHDI solution, exponential forms for these properties have been as-
sumed which allow us to obtain analytical expressions for various tensors in the
simple situation of homogeneous shear flow with uniform mean temperature gradi-
ents.

In the final step of the transition from a Lagrangian to Eulerian framework,
various moments of the closed kinetic equations have been taken to derive the re-
quired Eulerian equations. These equations were found to contain closure problems
due to the appearance of higher-order correlations in the equations for lower-order
ones for the case of non-homogeneous flows. Only the available methods in the
framework of the kinetic approach have been discussed to solve such problems.
The effects of the fluid compressibility on the particle phase have been discussed
using the particle Eulerian equations and two new phenomena of turbulent ther-
mal diffusion and turbulent barodiffusion of the particle phase along with other
similar new phenomena related to particle temperature have been quantified. In
the case of homogeneous flows with uniform mean gradients for fluid velocity and
temperature, the Eulerian equation predictions have been compared with direct nu-
merical simulations data. These comparisons indicate the success, in homogeneous
flows, of the prescription of the kinetic approach leading to Eulerian equations
presented in this paper. This leaves us with the unfinished important task of as-
sessment in non-homogeneous situation after properly tackling the closure prob-
lems posed by the correlations 〈b′i(x, t)b′j(x, v, θ, t|t2)〉 and higher-order correlations
appearing in the particle Eulerian equations. These will be considered in future
work.

This work was supported in part by the US Office of Naval Research and the
National Science Foundation. Computational resources were provided by the San
Diego Supercomputing Center.

Appendix A. Analytical expressions for velocity-related tensors
In this appendix, we present analytical expressions for various tensors λij and µij

which are required to predict v′jv′n and u′iv′j from (7.3) and (5.18) for homogeneous
flow with a uniform mean velocity gradient. In general, these tensors are functions of
x, v and t. In the present situations, analytical expressions can be obtained when an
exponential form is assumed for various correlations of the type 〈b′i(x, t)b′j(x, v, θ, t|t2)〉.

The governing equation (4.66) suggests that Gjk(t2|t) depends only on the time
variable for uniform ∂〈Uk〉/∂xi and constant values for βv . Also, Gjk represents the
displacement of the particle in the k-direction resulting from an impulsive force
δ(t− t2) applied in the j-direction (Reeks 1992). Here, we use a more general equation
for Gjk which includes a term accounting for the initial correlation between particle
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velocity and fluid velocity. The equation is written (Hyland et al. 1999a, b)

d2

dt2
Gjk(t2|t) + βv

d

dt
Gjk − βvGji ∂〈Uk〉

∂xi
= δjkδ(t− t2) + Ajkδ(t), (A 1)

where Ajk is given by

Ajk(t2) =
av

βv
δjkδ(t2) (A 2)

when Vi = avUi at time t = 0. For stationary turbulence we have Gij(t2|t) = Gij(t− t2)
and Gij(t1 = 0|t) is then given by (Hyland et al. 1999a, b)

Gij(t1 = 0|t) =

[
1 +

av

βv
δ(t1 = 0)

]{
δij

βv
(1− e−βvt) + δi2δj1

α

β2
v

×[2(e−βvt − 1) + βvt(1 + e−βvt)]
}
, (A 3)

where α = ∂〈U1〉/∂x2. We approximate various correlations for fluctuating fluid vari-
ables, in the general form of 〈b′i(x, t)b′j(x, v, θ, t|t1)〉, using the integral time scale

T̃ bibj = 1/βbibj , as

〈b′i(x, t)b′j(x, v, θ, t|t1)〉 = 〈b′i(x, t)b′j(x, t)〉 exp(−βbibj (t− t1)) (A 4)

and consider them stationary, i.e. βbibj are constants and the correlations are indepen-
dent of t1 and only depend on the difference (t− t1). Here summation is not implied
for repeated indices i and j on the right-hand side of (A 4). Using these expressions
for Gij and fluid correlations, expressions (4.71)–(4.72) for tensors λki and µki are
simplified and given by

λki = β2
v 〈u′i(x, t)u′k(x, t)〉I1(βuiuk ) + β2

v 〈u′i(x, t)u′2(x, t)〉δk1I2(βuiu2
) (A 5)

and

µki = β2
v 〈u′i(x, t)u′k(x, t)〉J1(βuiuk ) + β2

v 〈u′i(x, t)u′2(x, t)〉δk1J2(βuiu2
). (A 6)

Here, the functions I1, I2, J1 and J2 are given by

I1(β) =

∫ t

0

e−β(t−t1)G11(t− t1) dt1

=
av

β2
v

e−βt(1− e−βvt) +
e−(βv+β)t − 1

βv(βv + β)
− e−βt − 1

βvβ
, (A 7)

I2(β) =

∫ t

0

e−β(t−t1)G21(t− t1) dt1

=
avα

β3
v

e−βt[2(e−βvt − 1) + βvt(1 + e−βvt)] +
α

β2
v

{
2

[
1− e−(βv+β)t

βv + β
+

e−βt − 1

β

]
+
βv

β2
[1− e−βt(1 + βt)] +

βv

(βv + β)2
[1− e−(βv+β)t(1 + βvt+ βt)]

}
, (A 8)

J1(β) =

∫ t

0

e−β(t−t1) d

dt
G11(t− t1) dt1

=
av

βv
e−(βv+β)t +

1− e−(βv+β)t

βv + β
, (A 9)
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and

J2(β) =

∫ t

0

e−β(t−t1) d

dt
G21(t− t1) dt1

=
avα

β2
v

e−βt[1− e−βvt(1 + βvt)] +
α

βv

{
1− e−βt

β
+

e−(βv+β)t − 1

βv + β

− βv

(βv + β)2
[1− e−(βv+β)t(1 + βvt+ βt)]

}
. (A 10)

Appendix B. Analytical expressions for temperature-related tensors
The tensors Λk and Πk depend on Gjk and can be obtained from (4.75) and (4.76)

as

Λk = βvβθ〈t′(x, t)u′k(x, t)〉I1(βtuk ) + βvβθ〈t′(x, t)u′2(x, t)〉δk1I2(βtu2
) (B 1)

and

Πk = βvβθ〈t′(x, t)u′k(x, t)〉J1(βtuk ) + βvβθ〈t′(x, t)u′2(x, t)〉δk1J2(βtu2
), (B 2)

where I1, I2, J1 and J2 are as given in Appendix A.
Following the procedure given by Hyland et al. (1999a), equation (4.68) for Gθ is

modified to properly account for the initial correlation between particle temperature
and fluid temperature at time t = 0, written

d

dt
Gθ(t2|t) + βθG

θ = δ(t− t2) + Cθδ(t). (B 3)

Here Cθδ(t) accounts for the initial correlation and

Cθ =
aθ

βθ
δ(t2) (B 4)

with Tp = aθT at time t = 0. The solution of (B 3) is

Gθ(t1|t) = e−βθ(t−t1) +
aθ

βθ
δ(t1) e−βθt. (B 5)

Using Gθ(t1|t), the solution of equation (4.67) for Gi, along with the assumed expo-
nential form for various correlations of fluid flow variables, the expressions for ωi
and Ω as given by (4.73) and (4.77) are simplified for the different cases.

Case 1: When ∂〈T 〉/∂x2 6= 0 and ∂〈T 〉/∂x1 = ∂〈T 〉/∂x3 = 0.
Equation (4.67) for Gi gives G1 = G3 = 0 and

G2(t1|t) =

∫ t

t1

e−βθ(t−s)βθG22(t1|s)∂〈T 〉
∂x2

ds. (B 6)

Now Ω and ωi are given by

Ω = βvβθ〈t′(x, t)u′2(x, t)〉K1(βtu2
)
∂〈T 〉
∂x2

+ β2
θ〈t′(x, t)t′(x, t)〉K2(βtt) (B 7)

and

ωi = β2
v 〈u′i(x, t)u′2(x, t)〉K1(βuiu2

)
∂〈T 〉
∂x2

+ βvβθ〈u′i(x, t)t′(x, t)〉K2(βuit), (B 8)
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where

K1(β) =
1

∂〈T 〉/∂x2

∫ t

0

e−β(t−t1)G2(t− t1) dt1

=
1

βv(βv − βθ)
[
av

βv
e−βt(βv − βθ − βv e−βθt + βθ e−βvt) +

βθ − βv
β

(e−βt − 1)

+
βv

βθ + β
(e−(βθ+β)t − 1)− βθ

βv + β
(e−(βv+β)t − 1)

]
(B 9)

and

K2(β) =

∫ t

0

e−β(t−t1)Gθ(t− t1) dt1

=
1

βθ(βθ + β)
{[aθ(β + βθ)− βθ] e−(β+βθ)t + βθ}. (B 10)

Case 2: When ∂〈T 〉/∂x3 6= 0 and ∂〈T 〉/∂x1 = ∂〈T 〉/∂x2 = 0.
For this case, G1 = G2 = 0 and

G3(t1|t) =

∫ t

t1

e−βθ(t−s)βθG33(t1|s)∂〈T 〉
∂x3

ds. (B 11)

Also, Ω and ωi are given by

Ω = βvβθ〈t′(x, t)u′3(x, t)〉K1(βtu3
)
∂〈T 〉
∂x3

+ β2
θ〈t′(x, t)t′(x, t)〉K2(βtt) (B 12)

and

ωi = β2
v 〈u′i(x, t)u′3(x, t)〉K1(βuiu3

)
∂〈T 〉
∂x3

+ βvβθ〈u′i(x, t)t′(x, t)〉K2(βuit). (B 13)

Case 3: When ∂〈T 〉/∂x1 6= 0 and ∂〈T 〉/∂x2 = ∂〈T 〉/∂x3 = 0.
In this case, G3 = 0 and

G1(t1|t) =

∫ t

t1

e−βθ(t−s)βθG11(t1|s)∂〈T 〉
∂x1

ds, (B 14)

G2(t1|t) =

∫ t

t1

e−βθ(t−s)
[
βθG21(t1|s)∂〈T 〉

∂x1

+ G22(t1|s) ∂Q
∂x2

]
ds, (B 15)

Ω = βvβθ〈t′(x, t)u′1(x, t)〉K1(βtu1
)
∂〈T 〉
∂x1

+ βv〈t′(x, t)u′2(x, t)〉K1(βtu2
)
∂Q

∂x2

+Aβvβθ〈t′(x, t)u′2(x, t)〉K1(βtu2
)
∂〈T 〉
∂x1

+ βvβθ〈t′(x, t)u′2(x, t)〉L(βtu2
)

+β2
θ〈t′(x, t)t′(x, t)〉K2(βtt), (B 16)

and

ωi = β2
v 〈u′i(x, t)u′1(x, t)〉K1(βuiu1

)
∂〈T 〉
∂x1

+
β2
v

βθ
〈u′i(x, t)u′2(x, t)〉K1(βuiu2

)
∂Q

∂x2

+Aβ2
v 〈u′i(x, t)u′2(x, t)〉K1(βuiu2

)
∂〈T 〉
∂x1

+ β2
v 〈u′i(x, t)u′2(x, t)〉L(βuiu2

)

+βvβθ〈u′i(x, t)t′(x, t)〉K2(βuit). (B 17)
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Here A = −2α/βv and

L(β) =
avαβθ

β2
v

∂〈T 〉
∂x1

{
e−βt(βθt− 1)

β2
θ

+
e−(βv+β)t(βθt− βvt− 1)

(βθ − βv)2

+ e−(βθ+β)t

[
1

β2
θ

+
1

(βθ − βv)2

]}
+
βθα

βv

∂〈T 〉
∂x1

{
1− e−βt(βt+ 1)

βθβ2
+

1− e−(βv+β)t(βvt+ βt+ 1)

(βθ − βv)(βv + β)2
+

e−βt − 1

β2
θβ

+
e−(βv+β)t − 1

(βv + β)(βθ − βv)2
+

1− e−(βθ+β)t

βθ + β

[
1

β2
θ

+
1

(βθ − βv)2

]}
. (B 18)
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